A 2D Addressing Mode for Multimedia Applications

Georgi Kuzmanov!, Stamatis Vassiliadis®, and Jos van Eijndhoven?

! Delft University of Technology - Electrical Engineering Dept.,
P.O. Box 5031, 2600 GA Delft,The Netherlands
{G.Kuzmanov, S.Vassiliadis}QET.TUDelft.NL

2 PHILIPS Research - Dept. of Information and Software Technology,
Eindhoven,The Netherlands
jos.van.eijndhoven@philips.com

Abstract. This paper discusses architectural solutions that deal with the
high data throughput and the high computational power - two crucial
performance requirements of MPEG standards. To increase the data
throughput, we define a new data storage facility with a specific data
organization and a new addressing mode. More specifically, we intro-
duce an addressing function and refer to it as two-dimensional block
addressing. Furthermore, we propose such an addressing approach, as an
architectural feature and we believe it has useful properties that may po-
sition it as a basic addressing mode in future multimedia architectures.
In addition, we propose an instruction set extension, utilizing the advan-
tages of this addressing mode, as means of improving the computational
power of a general-purpose super-scalar processor. To illustrate this con-
cept, we have implemented a new instruction ” ACcepted Quality” as a
dedicated systolic structure. This instruction supports the correspond-
ing function ”ACQ” as defined in the Verification Model of MPEG-4.
Its FPGA realization suggests 62 ns operating latency. Utilizing this re-
sult, we have made performance evaluations with a benchmark software
(MPEG-4 shape encoder) using a cycle-accurate simulator. The simula-
tion results indicate that the performance is increased by up to 10%. The
introduced approach can be utilized by data encoding tools, which are
based on block division of data. These tools are an essential part of many
recent and up coming visual data compression standards like MPEG-4.

1 Introduction

The recent development of multimedia applications made them one of the most
demanding types of workloads. Their new performance requirements already ex-
ceed the capabilities of current general-purpose architectures!. Therefore, the
need for architectures, dedicated for the new multimedia applications, provokes
the nontrivial problem to define such architectures. On the other hand, the fast
development rate of the new visual data compression standards, like MPEG,

! In this paper, by architecture of any computer system, we mean the conceptual
structure and functional behavior as seen by its immediate user [2]

dramatically shortens the time-to-market constraints and increases the flexi-
bility requirements. Furthermore, the enormous memory throughput and high
computational power, required by the recent MPEG standards, become crucial
in solving the problems with their real-time implementation.

Most of the algorithms in MPEG applications are data intensive and have
two very important features: data locality and data reusability. These two fea-
tures require a very intensive data transfer over a restricted location of data.
In MPEG this transfer is non-symmetrical - memory loads are much more in
number than memory stores and data are processed identically. These proper-
ties can be exploited to achieve a better performance of an MPEG architectural
implementation. In addition, the support of many functionalities found in mul-
timedia standards (e.g., MPEG-4) is optional. In such cases, it is not effective to
make a hardwired architectural implementation that supports all functionalities
in the standards. To keep the implementation of such a complex multimedia ar-
chitecture at a reasonable cost-performance ratio, a reconfigurable approach can
be used.

In this paper, with architectural solutions, we enable implementations that
would easily meet the performance requirements of the new multimedia ap-
plications. The reported work represents parts of the research, involved into
the development of a reconfigurable microcoded processor within the MOLEN
project [20]. In this project, a new processor architecture is proposed that sup-
ports reconfiguration at the architectural level and achieves high flexibility in
tuning a system for a specific application. The reconfiguration and execution
processes are controlled by only three new instructions, allowing instructions,
entire pieces of code, or their combination to execute in a reconfigurable manner.
More specifically, this paper proposes the following solutions. To obtain higher
data bandwidth we define at the architectural level a new addressing mode, re-
ferred to as two-dimensional block addressing. This addressing mode involves
three architectural features:

— Two-dimensional data storage displayed to the immediate user of the archi-
tecture;

— Block data type as a basic addressable unit;

— Two-dimensional addressing function for random access of blocks of visual
data.

To make the benefits of the defined addressing mode stronger and to improve
the computational power of the system, we also propose an instruction set ex-
tension. We have implemented the new instruction ” ACcepted Quality” (ACQ),
which supports the identically named function in MPEG-4. This instruction
utilizes the two-dimensional block addressing and is an essential part of the
shape encoding process. The ACQ has been implemented as a scalable systolic
structure, described in VHDL. The VHDL source has been synthesized for an
FPGA chip, and netlist simulations have been run. The data, reported from
the FPGA netlist simulator have been used into a cycle-accurate simulator of
an out-of-order superscalar microarchitecture. Assuming Altera FPGAs and the

SimpleScalar toolset [5] for microarchitectural simulations, we reduce the cal-
culation of the ACQ function to 62ns, allowing performance gains of the shape
encoder by up to 10%.

The discussion in this paper is organized as follows. Section 2 gives some
background information about data processing and organization in visual data
compression standards. In Section 3 the problem with visual data alignment in
conventional, linearly addressable memories is discussed. Some related work is
reported in Section 4. Section 5 proposes the new addressing mode, gives a formal
definition of it and suggests its possible utilization. In Section 6 a new function,
utilizing the newly defined addressing, is proposed and its implementation is
discussed. An evaluation of the proposed structure is performed and the results
are reported in Section 7. The conclusions of this paper are included in Section
8.

2 Visual Data Presentation in MPEG

The industrial impact of the new digital technology urged the development of
standards for digital video compression. All these standards aim to preserve
best possible visual quality at a given bitrate range. In this paper we focus on
the MPEG standards and their basic requirements. The first generation video
coding standard, MPEG-1, is dedicated for data rates on the order of 1.5 Mbit /s
and is intended for storing digital audio-visual information in a storage medium
such as CD-ROM. MPEG-2 extends the bitrate to the range of over 10Mbit/s
and is currently used as basic coding standard for digital TV broadcasting and
High Definition Television (HDTV). The latest complete visual coding standard,
MPEG-4 [12][13], enables data transmission at very low bit rates (64 kbit/s).
The inclusion of entirely new content-oriented functionalities, however, makes
most of the specialists refer to MPEG-4 as a new standard generation rather
than the next MPEG version. While in MPEG-1,2 a whole frame of a video
sequence is processed, in MPEG-4 the frame is decomposed with respect to its
content and each decomposed part is processed separately.

In all MPEG standards, visual data is physically displayed as a two-dimensional
plane of picture elements (pixels). The basic building block of an MPEG pic-
ture is the macroblock (MB) depicted in Figure 1. Each macroblock consists of
a 16x16 array of luminance (grayscale) pixels and two 8x8-pixel chrominance
(color) blocks. These three blocks actually cover the same picture area to repre-
sent its full-color and each 16x16 luminance block is processed as four 8x8-pixel
blocks.

For content-based coding, MPEG-4 uses the concept of a video object plane
(VOP). VOP is an arbitrarily shaped region of a frame, which usually corre-
sponds to a semantic object in the visual scene. A sequence of VOPs in time
domain is referred to as a Video Object (VO). This means that we can view
a VOP as a ”frame” of a VO. Each of the video objects is transmitted by a
separate bitstream of arbitrary-shaped VOPs. Once the VOPs, required for a
visual scene composition are available in the receiver, the corresponding frame

16 pixels

8 pixels 8 pixels

Cb chrominance Cr chrominance
(blue) (red)

Luminance (grayscal€)

Fig.1. The MPEG Macro Block

is reconstructed. The concept of the frame composition in MPEG-4 is sketched
in Figure 2.

Fig. 2. Frame composition in MPEG-4

To distinguish an object from the background and to identify the borders
of a VOP, MPEG-4 defines shape of an object. Shape information is provided
in binary or grayscale format. The binary format represents the object shape
as a pixel map, which has the same size as the bounding rectangular box of
the VOP. Each pixel from this bitmap takes one of two possible values, which
indicate whether a pixel belongs to the object or not. The binary shape repre-
sentation of a VOP is referred to as binary alpha plane. This plane is partitioned
into 16x16 binary alpha blocks and each binary alpha block is associated with

the macroblock, which covers the same picture area. In the grayscale shape for-
mat, each pixel can take a range of values, which indicate its transparency. The
transparency value can be used for different shape effects (e.g.,blending of two
images).

3 The Addressing Problem in MPEG

Video information is represented as a scanned sequence of pixels from a two
dimensional visual plane. In digital video systems, this information is usually
stored into linearly addressable memories and displayed later as two-dimensional
frames. In MPEG standards, this information is processed and modified between
the scan and display phases. Most of data processing in these standards, however,
is not performed over pixel sequences, but over certain regions (blocks of pixels)
from a frame, and this arises some problems with data alignment and accessibility
into systems memory. To illustrate these problems, let us take the following
example. Let us assume a linearly addressable memory and a pixel plane divided
into blocks with dimensions 2x2, where each pixel is represented by a byte (see
Figure 3). In linear addressing spaces the basic addressable units are bytes and
words. We store video information in a conventional scan-line manner and we
want to access the pixel block containing pixels 1, 2, 11 and 12. This pixel block
(32 bits of information) is not aligned into consecutive memory locations (see
Figure 3b) and we can not access it by a single memory transfer even if we
can transfer a 32-bit word per memory cycle. This may lead to delays in data
processing since the processor would have to wait for the whole data delivery.
For MPEG-1,2 we may tune the memory system to pack the right bytes into a
word, since the scan line length is a constant, equal to the width of the frame. In
MPEG-4, however, this would not be so simple. The reason is that the scan line
length is equal to the width of the VOP, which in turn may take any arbitrary
value.

The other extreme approach to access block-organized data, stored into lin-
early addressable memory space is to reorder data. If we store each block of pixels
into consecutive bytes (Figure 4), we will be able to access the whole required
information for these blocks in a single memory cycle (e.g., block with pixels
1, 2, 11 and 12). In MPEG standards, however, some of the most demanding
algorithms (e.g., motion estimation) do not process only the blocks, set into the
original block grid. These algorithms also require to access block data with ar-
bitrary position in the frame. In such cases the block-oriented reordering would
not help for accessing the right piece of data. For example block containing pixels
12, 13, 22 and 23 (Figure 4) can not be accessed in a single memory cycle, not
even in two cycles, because its pixels are scattered through the memory.

These two examples show that different memory organizations and addressing

modes are vital for data processing speed-up of MPEG architectures and their
implementations.

'« Scan-linelength o
11 2]3]|4 9 | 10
11 | 12 | 13 | 14 19 | 20
a)
21| 22| 23 | 24 29 | 30
31| 32] 33| 34 39 | 40
Zi]

scan-line length

b)

‘|

block to access

Fig. 3. Video Data Alignment into Linearly Addressable Memory: a) Pixels in a Video
Frame; b) Block Access in a Scan-Line Aligned Data Memory.

r— block — ™7 block —™ < block — ™7 block —™

1|2|11|12 3|4|13|14 """ 21|22|31|32 23|24|33|34 """

L |

block to access

Fig. 4. Block-based Alignment of Visual Data into Linearly Addressable Memory

4 Related work

In [14], the three common addressing paterns for vector processors are described.
They are classified as sequential, regular and submatriz accesses. The submatrix
access is, in essence, a two-dimensional addressing in a square vector array with
firmly defined dimensions.

In [16], Park develops the ideas from [4][15][17][19] for two-dimensional data
alignment into multiple memory modules. He proposes a faster buffer memory
system by separating the address calculation from the address routing and solv-
ing the complex control problem of the latter. This concept for data allocation
has been used in the design of graphical display systems where it is referred to
as a block subarray access. However, it is not defined as an architectural issue
and is not implemented within visual data compression standards.

A flexible processor, adapted to conventional motion-estimation algorithms is
proposed in [6]. Some ideas for a specific data-memory organization and access
are discussed and a trial-and-error data reordering is proposed for algorithm

independent and optimal performance solutions. This processor is too specialized
and requires additional data reordering.

An extensive exploration in memory management and organization for MPEG-
4 encoders is reported in [3,18]. However the focus is in the field of low-power
consumption. The proposal combines background and foreground memory in
a low-power optimized hierarchy and an approach to design a processor array
within the context of the derived memory organization. The power consumption
is minimized by dramatically decreasing the number of background memory ac-
cesses without sacrificing speed (e.g., without changing the memory bandwidth).

Multiprocessor video processing systems with distributed embedded DRAM
are discussed in [9,10]. The DRAM and local SRAM of the systems are dis-
tributed to multiple processor nodes. The integrated DRAM is primarily used
as frame buffer. Loading and storing operations between local SRAM and DRAM
are controlled by a DMA controller, capable of addressing rectangular image por-
tions. A mechanism for block oriented data transfer between the processor nodes
is also discussed. The memory organization is not designed for co-existence with
a general-purpose processor (GPP) and is not intended for an FPGA implemen-
tation.

In [1], some instruction set extensions aiming at MPEG-4 video are pro-
posed. New instructions are proposed for block-level processing, bitstream pars-
ing, shape processing and padding. A VLSI MPEG-4 codec, called M-PIRE, was
developed and its macroblock engine described in [8]. The same paper empha-
sizes on the instruction set discussion as well.

In this paper we differentiate with previous proposals in one or more of the
following;:

— We define the architectural aspects of a universal, reconfigurable data stor-
age, dedicated for block-organized visual data (differentiates from [6,16]).

— The storage is compatible with any general-purpose architecture and is suit-
able for an implementation in a custom computing machine - a hybrid be-
tween GPP and FPGA(differentiates from [9, 10]).

— The definition allows implementations with higher data throughput (differ-
entiates from [3,18]).

— This storage should be utilized by reconfigurable accelerators, supporting
important multimedia instructions. We implement the ACQ instruction for
the first time (therefore not included in [1, 8]).

We also differentiate from all previous proposals (including [14]) in defin-
ing the two-dimensional addressing over a two-dimensional data storage with
variable dimensions.

5 The Two-Dimensional Addressing

Visual information has a two-dimensional structure, so the most natural ap-
proach for accessing it is to address a two-dimensional memory space. Since the

basic unit being processed in MPEG is the pixel block, we can assume an address-
ing space with two dimensional logical organization, where the basic addressable
units are blocks. Figure 5 depicts an abstract design model of the proposed idea.
The interconnect network is responsible for routing the right data block from
the memory array to the processing units.

N
- o

A e |

o N
e e e e] TN
0 - L S B e

M | ERsbemeer i c T |kxl

N o\c’)v
e i gl Nk

E

y s g T

Fig.5. An Abstract Design Model of a 2D Addressable Memory

Definition 1 We define the Two-Dimensional Block Addressing as the following
address function:

A2, 5) =
Di,j Dij+1 o Pij+k—1

Di+1,5 Pit+1,j+1 -+ Pitl,j+k—1
Diti-1,j Pi+i—1,j+1 -+ Pitl-1,j+k—1

,where k,l are block dimensions;

Di,; represents pixzel with coordinates i,j in the addressable area;
0<i,k<M,0<j,l<N;

M, N are the dimensions of the 2D addressable area.

If k=1, the address function can be denoted as A2 (i, j), so A% (i, j) denotes
the 2D address i, j of a 16x16 block.

The definition includes three architectural issues:

Two-dimensional data storage displayed to the immediate user (programmer)
of the architecture.

Block data type as a basic addressable data unit.

Addressing function to access blocks of visual data. The definition shows that
the 2D address of a block is the same as the 2D-coordinates of its upper-left-
most pixel in the addressable area. We can also refer to the above proposed ad-
dressing scheme as a two-dimensional cutting or two-dimensional barrel shifting,
performed by the access network block in Figure 5. The graphical representation
of the two dimensional block addressing is depicted in Figure 6.

A
Y

R

<A A (1))

Fig. 6. 2D Block Addressing

The definition does not restrict the dimensions of the addressable area (M
x N). These dimensions can take any value, depending on the application being
implemented. This is very important for the implementation of MPEG-4, since
each VOP has an arbitrary shape and size. Furthermore, each MPEG algorithm
requires different memory amount (e.g., search area for motion estimation or a
whole frame). It is important to note that we define the 2D addressing at the
architectural level so it is up to the designer to propose its implementation. The
memory can be implemented as an on-chip buffer with dedicated organization.
The latest FPGAs of Xilinx have up to 3.5 Mb true dual-port RAM on-chip [21],
allowing reconfigurable implementations of 2D addressable storages for up to 4
frames or VOPs. Read and write operations are not symmetrical in MPEG-4
where random block read is the most frequent memory access type while write
operations are relatively seldom. Simpler implementations and higher speed-ups
are achievable by exploiting the asymmetry between data read and write memory
accesses.

6 Addressing Utilization

Besides the data throughput, the computational power of a processor can also
be improved by defining instructions that utilize the proposed (block) data type
and addressing mode. These instructions should support program kernels or func-
tions that are consistent with three basic preconditions for the processed data:
block-organized visual data, data locality and data reusability. A good candidate
to utilize the proposed addressing mode that meets these three preconditions is
the binary shape encoder in MPEG-4. Among the most important shape ma-
nipulations is the verification of the accepted quality of a block encoding - the
accepted quality (ACQ) function.

6.1 The Accepted Quality Function

In MPEG-4, a decision about a suitable coding mode is made for each BAB in the
binary alpha map. An essential part of this process is the necessity to ascertain
whether this BAB has an accepted quality under some specified lossy coding
conditions. Each BAB is divided into 16 4x4 pixel blocks (PB) and this data
structure is used by the criterion for an accepted quality. A dedicated function
called ACQ is defined in [12]:

Definition 2 Given the current original binary alpha block i.e. BAB and some
approximation of it i.e. BAB , it is possible to define a function

ACQ(BABI) = MIN/(acqo,acq, ..., acq1s), (1)
where

(2)

and SAD_PB;(BAB,BAB') is defined as the sum of absolute differences for
PB;, where an opaque pizel has value of 255 and a transparent pizel has value
of 0.The parameter alpha_th has values of {0,16,32,64,...,256}.

aca: — 0 if SAD_PB,; > 16 * alpha_th
4 = 1, otherwise.

The ACQ function shows whether the encoding (BAB') of a certain BAB
gives an accepted quality result according some specified lossy coding conditions.
These conditions are formally determined by the alpha threshold value. Figure 7
shows the influence of the alpha_th parameter on the appearance of an encoded
VOP. The higher the alpha_th value is, the lower the acceptable quality of the
encoding is. If alpha_th=0, then encoding will be lossless (with the highest visual
quality).

We can represent SAD_PB; as follows:

15)
SAD_PB; = 2552 |Pit6+j — P;164] (3)
7=0

t

where P;164; and Pil.16 4j are the binarized values of the j~** pixels from PB;

and PB; respectively and a value of 0 represents a transparent pizel while a

Fig. 7. Alpha threshold influence on the VOP visual quality: left - alpha_th=0; right -
alpha_th=256

value of 1 - an opaque one. According to these assumptions, we can substitute
the absolute difference in (3) with a zor operation:

15
SAD_PB; =255 (Pii6+; ® Piygy;) =
7=0
= 255(PB; ® PB;) = 256(PB; & PB;) — (PB; ® PB)) (4)

where PB; ® PB; denotes the bit sum of the bit-by-bit zor over the pixel blocks.
According to Definition 2 and Equation (4):

acq; = (SAD_PB; < alpha_th *16) =

= [256(PB; ® PB;) < alpha_th x 16 + (PB; ® PB,)| (5)

and
ACQ(BABI) = AN Dig(acqo, acqi, ..., acqys) (6)

According to Definition 2, alpha_th * 16 = alpha_ths x 256, where alpha_ths
denotes the five MSD of alpha_th. On the other hand the result of (PB; & PB;)
is a five-digit number and we can reduce the acg; computation to the comparison
of two 5-digit numbers as follows: acq; = [(PB; ® PB;) < alpha_ths.28] and

255
i 256 .~ 1-
sice 355 ~ 1:

acg; ~ [(PB; & PB;) < alpha_ths] (7)

The implementation of Equation (7) is depicted on Figure 8. We can assume
the discussed structure as a basic processing element (PE) and (taking into
account Equation (6)) we can build the systolic processor shown on Figure 9.

16-5
Counter

5

Y

ACQiI
alpha_th[8:4]

alpha_th[8:4]

acqi

Fig. 8. Accepted quality single pixel-block processing element

6.2 Scalability and Data Bandwidth

The proposed circuit would take two cycles for execution in a real implementa-
tion2, and if pipelined it can produce a valid result every cycle given the data
throughput requirements are met. On the other hand, the structure is scalable
and can meet any memory bandwidth restrictions. For its efficiency, however,
a multiple of 16 bits per cycle bandwidth is recommended, ranging between 16
and 256 bits/cyc for a single BAB. Figures 8 and 9 show the two extreme cases -
a pixel block processor and a BAB processor. These two processors differ in the
granularity and the throughput of the processed data. If we use the 2D address-
ing mode over an on-chip memory array for the ACQ engine, we can randomly
fetch the required data amount, thus supplying the optimum data throughput.

7 Evaluation

To evaluate the proposed structure of the ACQ function accelerator, a single
processing element and an array of processing elements have been modeled
in VHDL and RTL simulations have been run. The VHDL models have been

2 A cycle here is considered to be comparable to the cycle of a high speed, 2-cycle
multiplier.

BAB BAB’

Co Ci1| 7 C15

- ACQLIACQL. ACQ
1 > 15

ACQ(BAB’)

Fig.9. The ACcepted Quality processing structure

synthesized for Altera FPGA. The reference software for the evaluation of the
structure was Altera Max+Plus II. The simulation results indicate that each
processing element performs the acgq; function within 60 ns. The evaluation of
the MIN function takes about 2 ns. Table 1 suggests the processing latency and
memory bandwidth, required for different number of processing elements in an
Altera FPGA. Besides the operating latency, we use another measurement for
the speed of the unit in terms of processed data units per time unit. In the
proposed structure the basic data units are BABs and we achieve a speed of up
to 16 129 032 BAB/s. Since there is a macroblock corresponding to any BAB
and the macroblock processing speed is defined in the MPEG-4 profiles [11], we
can use our results to estimate the real-time operating capabilities of the circuit.
For the core and main MPEG-4 profiles, the required real-time rates are 23 860
MB/s and 97 200 MB/s (macroblocks per second) respectively. These numbers
are well below our simulation results and, assuming that a macroblock manip-
ulation involves a BAB processing as well, it is evident that the proposed ACQ

Table 1. Processing speed and required data bandwidth according to the number of
processing elements (for Altera FPGA)

Number of|Processing| BAB/s Data
PE latency, ns bandwidth

1 992 1008 065 | 16 bit

2 496 2016 129 | 32 bit

8 124 8 064 516 | 128 bit

16 62 16 129 032 256 bit

engine can easily meet the real-time constrains of a dedicated MPEG-4 shape
processor.

To evaluate the structure as an instruction implementation, however, we have
to use the reported data into a cycle-accurate simulator of a microarchitecture.
The evaluation assumptions are described bellow:

— As a simulator, we have used the sim-outorder from the SimpleScalar Toolset
(version 2.0) [5]. The base machine has a super-scalar MIPS architecture and
comprises of the following units: 4 integer ALUs, 1 integer MULT/DIV unit,
4 FP adders, 1 FP MULT/DIV-unit, and two memory ports.

— We simulated the MOLEN machine organization, adopted from [20].

— The benchmark software we used was the MPEG-4 VM of the European
ACTS Project MoMuSys [7].

To utilize the ACQ instruction in the MPEG-4 encoder, we have modified
its source code by including some assembly calls to the configure and execute
instructions as defined in MOLEN [20]. However, we haven’t modified the com-
piler of the SimpleScalar Toolset to model the inclusion of the new instructions.
Instead, we have used the instruction annotation feature of the sim-outorder sim-
ulator. When annotating the new configure and ezecute instructions, we have
taken into consideration the timing of the original architecture. The timings of
the FPGA reconfiguration and the ACQ instruction execution have also been
included into the simulation model. We simulated the MOLEN machine organi-
zation with a reconfigurable ACQ extension and the simulation results indicated
up to 10% faster performance, while running the shape-encoding part of the core
MPEG-4 profile. With the reported data, however, we can indirectly (by means
of an instruction) estimate the performance gains of the two-dimensional block
addressing. In this particular evaluation, the performance acceleration is a result
both of the two-dimensional addressing and the high computational power of the
ACQ instruction.

8 Conclusions and future work

In this paper we discussed the problem of allocating visual data in MPEG stan-
dards with respect to the efficient data access and processing. To deal with this

problem, we made three new definitions for a potential MPEG architecture: a
two dimensional data storage, a block data type and a new addressing function.
We showed that the introduced addressing mode, referred to as two-dimensional
addressing, is feasible in MPEG-4. A vector instruction ACQ utilizing the new
memory access was proposed and its scalable implementation was investigated.
We achieved a considerable processing speed-up, because:

— the two-dimensional addressing is more suitable and faster than conventional
addressing schemes when applied over block organized visual data;

— we defined and implemented a new function that plays a key role in the
investigated class of algorithms.

A combination of the new addressing mode and a set of dedicated instructions
utilizing it, promises to be very beneficial for a range of MPEG algorithms. This
fact addresses two directions for future research:

Memory addressing implementation. A fast and cost-effective implemen-
tation of the two-dimensional addressing will make the benefits of this mode
stronger.

New instructions. Defining a complete set of dedicated instructions with
respect to the two-dimensional addressing forms another research direction for
an overall MPEG processing speed-up.

9 Acknowledgements

This research is supported by PROGRESS, the embedded systems research pro-
gram of the Dutch organization for Scientific Research NWO, the Dutch Ministry
of Economic Affairs, the Technology Foundation STW (project AES.5021) and
PHILIPS Research Laboratories, Eindhoven, The Netherlands.

References

1. M. Berekovic, H.-J. Stolberg, M. B.Kulaczewski, P. Pirsh, H. Moler, H. Runge,
J. Kneip, and B. Stabernack. Instruction set extensions for MPEG-4 video. Journal
of VLSI Signal Processing, 23(1):27-49, October 1999.

2. G. A. Blaauw and F. P. Brooks. Computer Architecture: Concepts and Evaluation.
Addison-Wesley, 1997.

3. E. Brockmeyer, L. Nachtergaele, F. V. Catthoor, J. Bormans, and H. J. D. Man.
Low power memory storage and transfer organization for the MPEG-4 full pel
motion estimation on a multimedia processor. IEEE Transactions on Multimedia,
1(2):202-216, June 1999.

4. P. Budnik and D. J. Kuck. The organization and use of parallel memories. IEEE
Transactions on Computers, 20(12):1566-1569, December 1971.

5. D.C.Burger and T.M.Austin. The simpleScalar Tool Set, Version 2.0. Technical
Report CS-TR-1997-1342. University of Wisconsin-Madison, 1997.

6. S. Dutta and W. Wolf. A flexible parallel architecture adapted to block-matching
motion-estimation algorithms. IEEE Transactions on Circuits and Systems for
Video Technology, 6(1):74-86, February 1996.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

G.Heising and M.Wollborn. MPEG-4 video reference software package. ACTS
AC098 mobile multimedia systems (MOMUSYS), December, 1999.

H.-J.Stolberg, M.Berekovic, P.Pirsch, H.-Runge, H. Moller, and J.Kneip. The M-
PIRE MPEG-4 codec DSP and its macroblock engine. In IEEE International
Symposium on Circuits and Systems, volume II, pages 192-195, Geneva, Switzer-
land, 28-31 May 2000.

K. Herrmann, S. Moch, J. Hilgenstock, and P.Pirsch. Implementation of a Multi-
processor System with Distributed Embedded DRAM on a Large Area Integrated
Circuit. In IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT), pages 105-113, October 2000.

J. Hilgenstock, K. Herrmann, and P.Pirsch. Memory Organization of a Single-
Chip Video Signal Processing System with Embedded DRAM. In 9-th Great Lakes
Symposium on VLSI, pages 42-45, March 1999.

ISO/IEC JTC11/SC29/WG11 W2502. ISO/IEC 14496-2. Final Draft Interna-
tional Standard. Part2: Visual, Oct. 1998.

ISO/IEC JTC1/SC29/WG11 N3312. MPEG-4 video verification model version
16.0.

ISO/IEC JTC1/SC29/WG11 N4030. MPEG-4 Overview - (V.18 - Singapore Ver-
sion), March 2001.

P. M. Kogge. The Architecture of Pipelined Computers. McGraw-Hill, 1981.

D. H. Lawrie. Access and alignment of data in an array processor. IEEE Trans-
actions on Computers, C-24(12):1145-1155, December 1975.

J. W. Park. An efficient buffer memory system for subarray access. IEEE Trans-
actions on Parallel and Distributed Systems, 12(3):316-335, March 2001.

J. W. Park and D. T. Harper. An efficient memory system for the SIMD con-
struction of a gaussian pyramid. IEEE Transactions on Parallel and Distributed
Systems, 7(8):855-860, August 1996.

R. Schaffer, R. Merker, and F. Catthoor. Combining background memory man-
agement and regular array co-partitioning, illustrated on a full motion estimation
kernel. In 13th International Conference on VLSI Design, pages 104-109, 3-7 Jan-
uary 2000.

D. C. van Voorhis and T. H. Morrin. Memory systems for image processing. IEEE
Transactions on Computers, C-27(2):113-125, February 1978.

S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN rm-coded processor. In 11th
International Conference on Field Programmable Logic and Applications (FPL),
2001.

XILINX. Virtex-IT Platform FPGA Handbook, December 2000.

