
3D-TV Rendering on a Multiprocessor

System on a Chip

Xing Li
*,**

, Jos van Eijndhoven
*
, Ben Juurlink

**

*
Philips Research Laboratory,

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
**

Computer Engineering Laboratory, Faculty of Electrical Engineering,

Mathematics, and Computer Science, Technische Universiteit Delft

Mekelweg 4, 2628 CD Delft, The Netherlands

X.Li-ET@its.tudelft.nl

Abstract – In this paper we describe how two

3D-TV rendering algorithms have been

mapped onto a chip multiprocessor named

Wasabi. This platform contains several

TriMedia processors that communicate via a

shared memory, fast message-passing

channels to support multi-chip systems, and

some application-specific co-processors. By

mapping 3D-TV rendering applications to

Wasabi, the performance figures are obtained

not only to check the feasibility of the

algorithms and mappings, but also to match

the application requirements with the

hardware architecture. The results show that

both algorithms scale with the number of

processors. The first algorithm makes viewer

see 2D effect without glasses. However, to get

3D effect, the viewer must wear a pair of

special glasses. And it can be executed in

real-time on a single TriMedia processor. The

3D effect produced by the second algorithm

can be seen without wearing special glasses.

To execute this algorithm in real-time, 16

TriMedias are needed.

Key words - 3D-TV rendering; optimization;

mapping; multiprocessor; system on a chip

I. INTRODUCTION

Modern embedded systems have to

support a wide range of applications. This

implies that they have to be highly

programmable. This can be achieved by

applying programmable microprocessors,

but in order to satisfy the performance

requirements of different applications,

several microprocessors have to be

integrated on a single chip.

The drawback of existing Philips

programmable platforms is that the

programming paradigm is locked to

Trimedia Streaming Software Architecture

(TSSA). Wasabi solution [4] can overcome

this drawback by providing an industry

standard programming model that offers a

single shared linear memory, complete

hardware cache coherence, and high-speed

synchronization primitives

However, there are not many targeted

applications are available yet for this

platform. In this paper we describe how two

3D-TV rendering algorithms [2] [3] have

been mapped onto Wasabi, which not only

checks the feasibility of the algorithms and

271

mappings, but also matches the application

requirements with the hardware architecture.

In order to implement the algorithms, the

following approach was taken. First,

sequential C code was developed. Thereafter,

we optimized the code by performing

algorithmic and arithmetic optimizations

(such as reducing the control flow,

floating-point to fixed-point conversion, etc.)

and vectorized using the special, SIMD-like

media instructions provided by the TriMedia.

Finally, multithreaded programs were

developed.

The results show that algorithmic and

arithmetic optimizations substantially improve

the performance of both algorithms, in one

case by more than a factor of 10. Vectorization

also improves performance, but not as much

as theoretically achievable because although 4

bytes can be packed in a single word we

cannot exploit 4-way parallelism because

intermediate results can be larger than one

byte. The results also show that both

multithreaded programs scale well with the

number of processors.

This paper is organized as follows. In

Section II, the preliminaries are given.

Section III describes how the glasses-based

algorithm [2] was implemented, optimized,

and vectorized for Wasabi and also presents

its experimental results. The implementation

of the more elaborate algorithm [3] that

does not require wearing special glasses and

its performance are given in Section IV.

Finally, in Section VI some conclusions are

drawn and directions for future work are

proposed.

II. PRELIMINARIES

Depth map and RGBD format

Philips promotes the so-called

image+depth or RGBD format as the 3D

video standard. As illustrated in Figure 1, it

can be seen that a per-pixel depth map

accompanies the normal image. Every pixel

of the normal image is composed of 3 basic

colors - red, green, and blue (RGB) – each

of which is a value between 0 and 255. The

values of R, G, and B from the normal

image and the depth information from the

depth map can be packed in a single 32-bit

word, which allows SIMD operations to

process it. The depth map is a grey level

picture (R=G=B), in which the objects

closer to the camera are brighter than the

objects further from it.

Figure 1: Normal image and its depth

map.

3D display categories and 3D effect

A categorization is given in Figure 2.

Figure 2: 3D display categories. (example

taken from [2, page 1]).

3D Display

Glasses-based Autostereoscopoic

Volumetric Flat

Holographic Multi-view

Head-traceked Parallax

272

The algorithm described in Section III is

for glasses-based systems. The algorithm

discussed in Section IV is on the aspect of

parallax.

There are several kinds of parallax that

can create a 3D effect. Philips Research

advocates the so-called 9-view solution

(each view only has one basic color), in

which people see a frame with 9 views

(colors) interleaved through a special lens.

As a result, people see the 3D effect.

III. MAPPING THE GLASSES-BASED

ALGORITHM ONTO WASABI

Description of the algorithm

This algorithm is a combination of 3D

and monoscopic viewing and associated

with glasses-based display system. The

viewer will see the 3D effect when he or she

wears a pair of special glasses and a

high-quality 2D video when he or she takes

them off.

When the viewer wears a pair of special

glasses, each of his eyes will receive a

different image which will be referred to as

IL and IR. IL and IR can be calculated from

RGBD data by warping luminance (and

color) according to [1]:

)2(

)1(

),(),(),(),(

),(),(),(),(

yxI
x

yxDyxIyxI

yxI
x

yxDyxIyxI

R

L

∂

∂
+≈

∂

∂
−≈

In these equations, D contains the depth

information and I is the warping of

luminance of the original image. Figure 3

illustrates Equation (1) and (2).

Figure 3: data serves as content for the

3D/mono system.

Without glasses, the monoscopic viewer will

see IL and IR superimposed in both eyes. It is

easy to derive from Equation (1) and (2)

that:

)3(2

RL
MONOSCOPIC

II
I

+
=

Implementation

In the original implementation, D is

calculated using the following formula:

)4(
)5.0

0.255

),(
(2),(−•=

yxR
yxD

where R(x,y) is the red value of the pixel

with coordinates (x,y) in the depth map.

Because the depth map is a grey level

picture, R(x,y) can be replaced by G(x,y) or

B(x,y). From Equation (4) it follows that

D(x,y) is in range [-1,+1] and that it can

take on 256 different values. Furthermore,

the range can be changed by multiplying D

with another integer (the variable

disparity-range in Figure 4).

Pseudo-code of the algorithm is depicted

in Figure 4(a). The actual source code is

written in C.

Optimizations

The algorithm was optimized for the

TriMedia processor using the following

approach:

a) First, algorithmic and arithmetic

∂/∂x

X

a a + b

b a - b
D(x,y) ∆I(x,y) IL(x,y)

IR(x,y) I(x,y)

273

optimizations are performed. Examples

of such optimizations are reducing the

control flow, converting floating point

operations to fixed point (integer) ones,

etc.

b) Second, vectorization is employed. The

R, G, B, and D data are packed into

32-bit words, which allows to process

them in parallel using the SIMD

instructions of the TriMedia.

Figure 4 illustrates the algorithmic and

arithmetic optimizations.

Figure 4: Algorithmic and arithmetic

optimizations.

 In Figure 4(a), the inner control flow

(if (switch=right)) is removed by rendering

the left and right image simultaneously. The

outer control flow (if (the pixel is not on

the edge)) is eliminated by employing the

mux operation, which returns its second

operand if the condition evaluates to be true

and its third operand otherwise. Furthermore,

the underlined floating point operations are

converted to fixed point (integer) ones

which replaces the division operation by a

shift. In Figure 4, every operation depicted

in italics actually consists of three

operations associated with R, G and B.

Figure 5 illustrates how the operations:

∆I(x,y)=(I(x-1,y)-I(x+1,y))*D(x,y)>>8) can

be implemented using the SIMD

instructions of the TriMedia. The operation

above includes the following three

operations in deed:

∆R(x,y)=(R(x+1,y)-R(x-1,y)).D>>8,

∆G(x,y)=(G(x+1,y)-G(x-1,y)).D>>8, and

∆B(x,y)=(B(x+1,y)-B(x-1,y)).D>>8.

Without vectorization, those operations will

be executed sequentially.

R(x-1,y) G(x-1,y) B(x-1,y) D(x-1,y)

R(x+1,y) G(x+1,y) B(x+1,y) D(x+1,y)

R G B D

D(x,y) D(x,y) D(x,y) D(x,y)

∆R(x,y) ∆G(x,y) ∆B(x,y) ……

Figure 5: Employing SIMD instructions.

switch = left or right;

for each pixel

{if (the pixel is not on the edge)

 {D(x,y)=2.0*(R(x,y)/255.0-0.5);

 ∆I(x,y)=(I(x-1,y)-I(x+1,y))/2;

∆I(x,y)= ∆I(x,y)*D(x,y)*disparity-range;

 if (switch=right)

 Out_I(x,y)=I(x,y)+ ∆I(x,y);

 else

 Out_I(x,y)=I(x,y)+ ∆I(x,y);

 }

else

 Out_I(x,y)=I(x,y);

} (a)

for each pixel

{

condition=the pixel is on the edge;

D(x,y)=(R(x,y)-128)*disparity-range;

∆I(x,y)=(I(x-1,y)-I(x+1,y))*D(x,y)>>8;

IR(x,y)=I(x,y)+∆I(x,y);

IL(x,y)=I(x,y)- ∆I(x,y);

Out_IR(x,y)=mux(condition,I(x,y),IR(x,y));

Out_IL(x,y)=mux(condition,I(x,y),IL(x,y));

} (b)

Word

Byte

SIMD-Subtraction

SIMD-Multiplication

Extract and vectorize MSBs of the products

274

From Figure 5, it can be seen that the

operation is decomposed into a sequence of

two SIMD operations -- subtraction and

multiplication. In the SIMD-Multiplication,

the MSBs of the products are extracted and

vectorized, which is equivalent to shift

every product 8 bits to the right. The result

in the least-significant byte is discarded. The

other operations in italics in Figure 4(b) can

be vectorized in the similar way.

Multi-threading

To benefit from multiple processors, the

program must be parallelized using multiple

threads. The scheduler of Wasabi will

automatically balance the workload on each

processor by assigning threads to processors

that are idle. Since the pixels of the original

image and the depth map are stored in large

arrays, the idea of multi-threading is to

divide the arrays into equal pieces and to

have each thread process a different piece

(segment of the screen).

.

Experimental results

The performance figures were obtained

using a cycle-accurate simulator of the

Wasabi architecture. All simulations

associated with this algorithm were done

using 2 frames of 720x576 input pixels.

Figure 6 depicts the number of cycles

required by the original code and that after

the optimizations and vectorization. It can

be seen that algorithmic and arithmetic

optimizations improve performance by a

factor of 12.3x. Vectorization yields another

factor of 2.1x, so 25.8x in total.

Figure 6: Execution time (the number of

cycles) of the different program variants on

a single TriMedia processor.

Figure 7 shows the number of cache stall

cycles that each program variant incurs.

Figure 7: Number of cache stall cycles

each program variant incurs.

In Figure 7, the numbers of cache stall

cycles decreases after the algorithmic and

arithmetic optimizations. The reason is that

in the original code IR and IL are computed

sequentially. However, the cache cannot

store the whole input image and its depth

map. Therefore, when the second image is

calculated, some of the input data, which

was used for calculating of the previous

image, must be reloaded from memory. In

the program variant after algorithmic and

arithmetic optimizations, IR and IL are

computed interleaved so that the input

image data is reused. After vectorization, the

Original

code

Algorithmic

and arithmetic

optimizations

Vectorization

M
il
li
o

n
 c

y
c
le

s

Original

code

Algorithmic

and arithmetic

optimizations

Vectorization

M
il
li
o

n
 c

y
c
le

s

2.25

1.50

0.75

0

275

number of cache stall cycles increases.

Because the algorithm is accelerated, the

processor accesses data much more quickly,

which creates some extra cache stalls.

The TriMedia processor can issue one

very long instruction word (VLIW) every

cycle and each VLIW consists of 5

Basic_operations (called slots) such as add,

load, etc. In practice there are two causes for

not achieving an actual launch rate of

5ops/cycle. (a) In compile time, the

compiler might not be able to reveal

sufficient ILP in the application program to

always fill the 5 issue slots. In such cases it

will insert useless ‘NOP’ operations. (b) In

run time, as result of instruction cache or

data cache misses, the processor will incur

stall cycles. In stall cycles no new

instructions are launched. Figure 8 shows

the combined effect of these two causes in

variable Efficiency. The Efficiency reflects

the compactness of those Basic_operations

in the VLIWs and can be define as:

)5(_5

_

timeExecution

operationsBasic
Efficiency

•
=

Figure 8: IPC for Instructions-per-cycle

of the program variants.

In Figure 8, the Efficiency of the original

code is poor because it contains many

control and data dependences. The

algorithmic and arithmetic optimizations

eliminate those dependences and the

corresponding program variant achieves

high Efficiency (almost 80% corresponding

to 4 of the 5 slots filled with useful

operations). After vectorization, the number

of cache stall cycles increases while

execution time decreases. Therefore, those

stalls cause the Efficiency to decrease.

To simulate the multi-threaded program,

the simulator was configured with 9

Trimedia processors, which is the number of

TriMedias targeted for the Wasabi chip.

Figure 9 displays the execution time as a

function of the number of threads.

Figure 9: Execution time on 9 Trimedia

processors as a function of the number of

threads.

It can be seen from Figure 9 that the

program scales well. When there are fewer

threads than processors, the speedup is

almost linear in the number of threads and,

furthermore, when there are 9 threads, the

speedup is almost a factor of 9x. Moreover,

the amount of work per processor is very

well balanced. Adding more threads could

be beneficial if the work is unbalanced

(because the scheduler assigns threads to

processors that are idle) but here we see that

the execution time increases slightly if more

threads are added. This is because more

threads imply more scheduling time.

Note however that Figure 9 is limited in

Original

code

Algorithmic

 and arithmetic

optimizations

Vectorization

S
lo
ts

Threads

5

4

3

2

1

0

M
il
li
o

n
 c

y
c
le

s

Efficiency

276

its semantics. The data to draw that figure

was gathered in the same way as for the

earlier figures, meaning that only the

application load of the system is measured,

excluding the overhead of other system

tasks. In particular the system thread

scheduler itself was not measured. However,

Figure 9 clearly shows that (a) the

application allows for plenty of parallelism

for this multi-processor and (b) the system

infrastructure and memory hierarchy are

capable of providing sufficient to keep all

processors effectively busy.

IV. MAPPING THE PARALLAX

ALGORITHM ONTO WASABI

In this section, we describe a novel

3D-TV rendering algorithm [3], which

generates a viewpoint-transferred image

based on a primary image, and describe how

that algorithm was mapped onto Wasabi.

Description of the algorithm

In Figure 10, the original and the

viewpoint-transferred images are

superimposed by making the original image

half transparent. The image is blurred

because the viewpoint-transferred image has

a shift effect.

Figure 10: Superimposed effect.

Figure 11 shows a tree in front of a house

with one scanline extracted.

Figure 11: Rendering from image+depth:

occlusions and deocclusions (example

taken from [3, page 4]).

It is clear in Figure 11 that the depth map

helps us to know the relative position of

every pixel to the original viewpoint.

Obviously, while rendering the image from

the new viewpoint, the introduced

occlusions should be dealt with. Moreover,

the camera in the original viewpoint does

not record some parts of the background

house. (i.e., we lack information to

reconstruct the image from the new

viewpoint.) One option to solve that is to

reconstruct extra information about the

background by using a filter and to insert

the reconstructed information at the position

of deocclusion.

Implementation

The main steps of the algorithm are that

(a) the occluded parts are simply discarded,

(b) the extra information about background,

which fills in the hole of deocclusion, is

generated by a filter and (c) the occluding

parts are reconstructed to the new

Mapped_positions in the output image.,

which depends on how much the viewpoint

is transferred. In the implementation, (b)

and (c) are integrated into one routine. A

pseudo-code description of this routine is

Scanline

Depth of scanline

Occlusion Deocclusion

Original view Transferred view

277

given in Figure 12.

Figure 12: Pseudo-code of the

Reconstructing routine.

Figure 13 illustrates the Reconstructing

routine.

Figure 13: Illustration of the

Reconstructing routine.

a:Last_progressed_position, b:Right,

c: Mapped_position d:Left,

e:Next-progressed-position.

In Figure 13, the pixel positions in both

the input and output scanlines are

consecutive integers. The occluding

segment from pixel P0 to P1 is mapped to

the segment from dx to dn in the output

scanline. In the case illustrated by Figure 13,

the do-while loop in Figure 12 is executed

two times. The number of the loop times is

guarded by the value of W. W is the red area

(W = ∫
c

b
f1) in the first iteration and the

dark pale area (W = ∫
c

b
f2) in the second.

Consequently, the R, G, B values of P0 are

decomposed into Mapped_position and

Mapped_position + 1. Furthermore, in the

case shown in Figure 13, the whole

Reconstructing routine is also computed

two times. First, Progressed_position is

dx (t=0) and, second,

Progressed_position progresses to

Next_progressed_position (t=1).

Optimizations

The following optimizations have been

performed:

a) Simplification of the filter.

b) Algorithmic and arithmetic

optimizations.

c) Vectorization.

The filters can be modeled as functions.

Figure 14 shows three filters: the Box filter,

the Tent filter and the Mitchell filter. In

principle, the quality of the output image is

positively correlated with the order of the

filter function. It is obvious that high order

filter functions are computationally more

expensive. We therefore want to use a lower

order filter that maintains the quality of the

output image. We found that Using Box

filter, the output image hardly depredates.

Hereby, the Box filter is chosen and further

optimizations are based on that.

Reconstructing()

Progressed _position=dx + t*subsegment;

//t is recursive times of the routine subtrat 1

//subsegment=(dn-dx)/(t+1).

Mapped_position=

integer around Progressed_position;

Left=

(last_progressed_position + progressed_position)/2 -

Mapped_position;

Right=

(next_progressed_position + progressed_position)/2 -

Mapped_position;

// Mapped_position is supposed to be the origin.

do{

W=filter_function(Right)-filter_function(Left);

Out_R(mapped_position, y) += W * R(x,y);

Out_G(mapped_position, y) += W * G(x,y);

Out_B(mapped_position, y) += W * B(x,y);

//Out_R, Out_G, Out_B are arrays storing

//red green/ blue values for output image.

Mapped_position++;

Left - - ; Right - -;

}while(W>0)

}

f1 f2
Output scanline

Intput scanline

a b
c
d

dx
dn

P0 P1

e

278

Figure 14: Filter functions. a,b,c,d,e,f,g,h

and i are all constants.

The code profiling shows that the part of

discarding occluded parts (step (a) of the

algorithm) costs every little. Therefore, the

main effort of algorithmic and arithmetic

optimizations is only targeted at the

Reconstructing routine.

From Figure 13, it can be seen that the

Mapped_position always accumulates 1 or

0 but never negative values. Hereby, when

the Mapped_position progresses, the pixel

before it can be rendered out. As a result, in

the actual implementation, register variables

can be used to replace the arrays (Out_R,

Out_G, Out_B in Figure 12). Consequently,

the values in the registers are not written to

memory until the Mapped_position

proceeds. It implies that if the

Mapped_position is the same, the values

will stay in the registers, which saves

writing the results to memory.

Moreover, because of the simplicity of

the Box filter, the operation W =

filter_function(Right)-filter_function(Left)

can be implemented as W = Clip(-0.5,

Right, 0.5) - Clip(-0.5, Left, 0.5). The call

Clip(-0.5, x, 0.5) returns –0.5 if x is less

than –0.5, 0.5 if x is greater than 0.5, and x

otherwise.

In addition, the do-while loop in Figure

12 can be unrolled, because Right - Left

will never be greater than 2 (i.e., the loop

will be executed no more than 3 times.)

Hence, we can unroll the loop for 3 times

and, of course, add some extra

corresponding modifications. Unrolling the

loop eliminates many branches that the

compiler generates. Consequently, that

optimization reduces the branch delay

penalty and speeds up the algorithm.

Figure 15 illustrates how the operations

W*R(x,y), W*G(x,y), and W*B(x,y) in

Figure 12 are vectorized.

R(x1,y) G(x1,y) B(x1,y) D(x1,y)

W W W W

R G B D

Out_R(x,y) Out_G(x,y) Out_B(x,y) …

Figure 15: Vectorization.

In Figure 15, the word of Ws can come

from a look-up table whose index is a

concatenation of Right and Left. The

primary value of W is in [0,1] but here

every W is magnified by 128 times. The

reasons to do that are (a) every W will not

exceed 8 bits so that it can be vectorized,

and (b) after the parallel multiplication, only

the MSB of each product is extracted and

vectorized. If W is not enlarged, accuracy

0 (x < -0.5)

Y= x+0.5 (-0.5 ≤≤≤≤ x <0.5)

0 (x > 0.5)

(a)Box filter

0 (x < -1)

Y= 0.5x2+x+0.5 (-1 ≤≤≤≤ x < 0)

0.5x2-x+0.5 (0 ≤≤≤≤ x ≤≤≤≤ 1)

 0 (x > 1)

(b)Tent filter

0 (x < -2)

a + x * (b- x * (c- x * (d- f * x)) (-2 ≤≤≤≤ x <-1)

Y= 0.5 + x * (g+ x2
* (h - i * x)) (-1 ≤≤≤≤ x <0)

0.5 + x * (g+x2
* (h + i * x)) (0 ≤≤≤≤ x <1)

1- a + x * (b+ x*(c + x * (d + f * x)) (1 ≤≤≤≤ x ≤≤≤≤2)

0 (x > 2)

(C) Mitchell filter

Word

Byte

SIMD-Multiplication

Shift every byte 1 bit to the left

Extract and vectorize MSBs of the products

279

will be lost. Even though, every product has

to shift 1 bit left at the end in order to keep

the accuracy.

Multi-threading

In this algorithm, the arrays storing the

normal image and its depth map cannot be

distributed and divided flexibly because the

computations are based on scanlines (fixed

number of pixels). But we can process

several scanlines in one thread. Therefore,

the number of threads generated is equal to

the number of scanlines divided by N.

Obviously, when N=1 (i.e., each thread

processes a single scanline), the

multi-threaded implementation is much

simpler. In addition, from Figure 9, it can be

concluded that the overhead of the scheduler

is rather small. Therefore, the performance

results of the simple solution (N=1) can be

representative of the results we need.

Experimental Results

All simulations for this algorithm were

performed with 2 frames of 640x1080 pixels.

Figure 16 depicts the execution time of the

original code with different filters and that

after the optimizations and vectorization

(using the Box filter).

Figure 16: Execution time of the parallax

algorithm on a single Trimedia processor.

It can be seen from Figure 16 that the

performance improves by around 25% by

simplifying the filter. And the algorithmic

and arithmetic optimizations save additional

90 million cycles. Finally, vectorization

speeds up the algorithm by another factor of

1.5x compared to the implementation after

algorithmic and arithmetic optimizations. In

total, the algorithm is accelerated by

approximately a factor of 6.5x compared to

the original code with the Mitchell filter.

The resulting execution time is around 25

million cycles.

Figure 17 gives the number of cache stall

cycles each program variant incurs. It shows

that the number of cache stall cycles is

almost unaffected by the filter that is

employed. That is expected because

changing the filter does not change the

structure of the code. Algorithmic and

arithmetic optimizations and again

vectorization increases the number of cache

stall cycles. The reason is partially that the

cache stalls can no longer be hidden because

the code is faster.

Figure 17: Number of cache stall cycles

incurred by the different implementations

of the parallax algorithm.

Figure 18 shows the Efficiency of the

M
il
li
o

n
 c

y
c
le

s

M
it

c
h

e
l
fi

lt
e
r

T
e
n

t
F

il
te

r

B
o

x
 F

il
te

r

A
lg

o
ri

th
m

ic
 a

n
d

a
ri

th
m

e
ti

c
 o

p
ti

m
iz

a
ti

o
n

s

V
e
c
to

ri
z
a
ti

o
n

M
il
li
o

n
 C

y
c
le

s

M
it

c
h

e
l
fi

lt
e
r

T
e
n

t
F

il
te

r

B
o

x
 F

il
te

r

A
lg

o
ri

th
m

ic
 a

n
d

a
ri

th
m

e
ti

c
 o

p
ti

m
iz

a
ti

o
n

s

V
e
c
to

ri
z
a
ti

o
n

2.5

2

1.5

1

0.5

0

280

different implementations of the parallax

algorithm. Changing the filter does not

affect the Efficiency either, because

simplifying the filter does not only decrease

the number of NOPs but also the number of

effective operations. The increase of

Efficiency after algorithmic and arithmetic

optimizations is due to the reduction of

control dependencies and converting

floating point operations to integer ones.

Consequently, the VLIWs contain more

useful operations. After vectorization, the

effect of cache stalls cannot be ignored any

longer. Because the number of cache stall

cycles increases relatively more while the

number of execution cycles decreases, the

Efficiency after vectorization is smaller than

before vectorization.

Figure 18: Efficiency of the different

implementations of the parallax

algorithm on a single TriMedia processor.

We now discuss the performance of the

multi-threaded program. With 2 frames of

640x1080 input pixels, 1080 threads are

generated. Again, the simulator was

configured with 9 TriMedia processors. The

resulting execution time is 3.8 million

cycles. And the total workload of the 9

TriMedias is 27.9 million cycles. It can be

seen that the total workload is roughly 9

times as much as the execution time. It

implies that the workload on each processor

is well balanced. Due to scheduling

overhead, 9 times the execution time is

slightly larger than the total workload. In

addition, the total workload is also larger

than the execution time obtained after

vectorization on a single processor. That

should also be attributed to scheduling

overhead.

V. CONCLUSIONS AND FUTURE WORK

Given the cost of 3D-TV, Philips

Research prefers to implement all 3D-TV

applications on a single Wasabi chip.

Consequently, the 3D rendering algorithm

should occupy as few TriMedia processors

as possible in order to leave processing time

for some other 3D-TV applications.

The glassed-based algorithm perfectly

matches this requirement. Even without

exploiting thread-level parallelism, the

algorithm runs in less than 5 million cycles

on Wasabi. Assuming that the frequency of

the TriMedia is 300MHz, one TriMedia

processor is enough to render 60 pairs of

output images per second, which matches

the real-time requirement. Then, the other 8

TriMedias on Wasabi can be assigned to

other applications. But people should wear a

pair of special glasses to see the 3D effect

and they get a common 2D effect by bare

eyes.

Philips Research therefore advocates

another algorithm - filtering occlusions and

filling in deocclusions - whose 3D effect can

be seen by our bare eyes. The output of this

algorithm is a viewpoint-transferred image

that is calculated from the original image

and mixed by 3 basic colors (red, green and

blue). Once we have that image, we can

M
it

c
h

e
l
fi

lt
e
r

T
e
n

t
F

il
te

r

B
o

x
 F

il
te

r

A
lg

o
ri

th
m

ic
 a

n
d

a
ri

th
m

e
ti

c
 o

p
ti

m
iz

a
ti

o
n

s

V
e
c
to

ri
z
a
ti

o
n

%

281

generate 9 of such images, which are

computed in different viewpoints and each

of those images only contains one basic

color. In the final rendering, 9 single color

images with different viewpoints are

integrated and interleaved into one frame

and, then, that 9-view frame is projected on

an LCD. Finally, through a special physical

lens in front of the LCD, people will see the

3D effect.

Similar to the previous algorithm, the

requirement is to render 60 of those 9-view

frames per second, our experimental result

-27.9 million cycles for one image with 3

basic colors- should, at least, be tripled.

Therefore, 16 Trimedias or 2 Wasabi chip

are needed to execute this algorithm in

real-time. It seems to be expensive. So the

future work is to develop another algorithm

that is computationally less expensive or to

optimize the parallax algorithm further,

which is possible to design and develop

some special hardware integrated in Wasabi

to perform some parts of the algorithm.

REFERENCES

[1] P. A. Redert, Multi-viewpoint systems for 3D

visual communication, Ph.D. Thesis, Delft

University, 2000.

[2] P. A. Redert, System for Simultaneous 3D

and Monoscopic Viewing, Philips research

report, Natlab, TN 2002/312.

[3] R-P. Berretty and F. Ernst, Rendering Frames

for 3D TV: Filtering Occlusions and Filling In

Deocclusions, Philips research report, Natlab,

TN 2003/109.

[4] P. Stravers and J. Hoogerbrugge,

Homogeneous Multiprocessing and the Future of

Silicon Design Paradigms, Proceedings of

International Symposium on VLSI Technology,

Systems, and Applications (VLSI-TSA), April

2001.

282

