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Abstract – In this paper we describe how two 

3D-TV rendering algorithms have been 

mapped onto a chip multiprocessor named 

Wasabi. This platform contains several 

TriMedia processors that communicate via a 

shared memory, fast message-passing 

channels to support multi-chip systems, and 

some application-specific co-processors. By 

mapping 3D-TV rendering applications to 

Wasabi, the performance figures are obtained 

not only to check the feasibility of the 

algorithms and mappings, but also to match 

the application requirements with the 

hardware architecture. The results show that 

both algorithms scale with the number of 

processors. The first algorithm makes viewer 

see 2D effect without glasses. However, to get 

3D effect, the viewer must wear a pair of 

special glasses. And it can be executed in 

real-time on a single TriMedia processor. The 

3D effect produced by the second algorithm 

can be seen without wearing special glasses. 

To execute this algorithm in real-time, 16 

TriMedias are needed. 

 

Key words - 3D-TV rendering; optimization; 

mapping; multiprocessor; system on a chip 

 

I. INTRODUCTION 

 

Modern embedded systems have to 

support a wide range of applications. This 

implies that they have to be highly 

programmable. This can be achieved by 

applying programmable microprocessors, 

but in order to satisfy the performance 

requirements of different applications, 

several microprocessors have to be 

integrated on a single chip. 

 

The drawback of existing Philips 

programmable platforms is that the 

programming paradigm is locked to 

Trimedia Streaming Software Architecture 

(TSSA). Wasabi solution [4] can overcome 

this drawback by providing an industry 

standard programming model that offers a 

single shared linear memory, complete 

hardware cache coherence, and high-speed 

synchronization primitives 

 

However, there are not many targeted 

applications are available yet for this 

platform. In this paper we describe how two 

3D-TV rendering algorithms [2] [3] have 

been mapped onto Wasabi, which not only  

checks the feasibility of the algorithms and 
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mappings, but also matches the application 

requirements with the hardware architecture.  

 

In order to implement the algorithms, the 

following approach was taken. First, 

sequential C code was developed. Thereafter, 

we optimized the code by performing 

algorithmic and arithmetic optimizations 

(such as reducing the control flow, 

floating-point to fixed-point conversion, etc.) 

and vectorized using the special, SIMD-like 

media instructions provided by the TriMedia. 

Finally, multithreaded programs were 

developed. 

 

The results show that algorithmic and 

arithmetic optimizations substantially improve 

the performance of both algorithms, in one 

case by more than a factor of 10. Vectorization 

also improves performance, but not as much 

as theoretically achievable because although 4 

bytes can be packed in a single word we 

cannot exploit 4-way parallelism because 

intermediate results can be larger than one 

byte. The results also show that both 

multithreaded programs scale well with the 

number of processors.  

 

This paper is organized as follows. In 

Section II, the preliminaries are given. 

Section III describes how the glasses-based 

algorithm [2] was implemented, optimized, 

and vectorized for Wasabi and also presents 

its experimental results. The implementation 

of the more elaborate algorithm [3] that 

does not require wearing special glasses and 

its performance are given in Section IV. 

Finally, in Section VI some conclusions are 

drawn and directions for future work are 

proposed. 

 

 

 

 

II. PRELIMINARIES 

 

Depth map and RGBD format 

Philips promotes the so-called 

image+depth or RGBD format as the 3D 

video standard. As illustrated in Figure 1, it 

can be seen that a per-pixel depth map 

accompanies the normal image. Every pixel 

of the normal image is composed of 3 basic 

colors - red, green, and blue (RGB) – each 

of which is a value between 0 and 255. The 

values of R, G, and B from the normal 

image and the depth information from the 

depth map can be packed in a single 32-bit 

word, which allows SIMD operations to 

process it. The depth map is a grey level 

picture (R=G=B), in which the objects 

closer to the camera are brighter than the 

objects further from it. 

 

 

Figure 1: Normal image and its depth 

map. 

 

3D display categories and 3D effect 

A categorization is given in Figure 2.  

Figure 2: 3D display categories. (example 

taken from [2, page 1]).                                                                                  

3D Display 

Glasses-based Autostereoscopoic 

Volumetric Flat 

Holographic Multi-view 

Head-traceked Parallax 
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The algorithm described in Section III is 

for glasses-based systems. The algorithm 

discussed in Section IV is on the aspect of 

parallax.  

 

There are several kinds of parallax that 

can create a 3D effect. Philips Research 

advocates the so-called 9-view solution 

(each view only has one basic color), in 

which people see a frame with 9 views 

(colors) interleaved through a special lens. 

As a result, people see the 3D effect. 

 

III. MAPPING THE GLASSES-BASED 

ALGORITHM ONTO WASABI 

 

Description of the algorithm 

This algorithm is a combination of 3D 

and monoscopic viewing and associated 

with glasses-based display system. The 

viewer will see the 3D effect when he or she 

wears a pair of special glasses and a 

high-quality 2D video when he or she takes 

them off.  

 

When the viewer wears a pair of special 

glasses, each of his eyes will receive a 

different image which will be referred to as 

IL and IR. IL and IR can be calculated from 

RGBD data by warping luminance (and 

color) according to [1]: 
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In these equations, D contains the depth 

information and I is the warping of 

luminance of the original image. Figure 3 

illustrates Equation (1) and (2).  

 

 

Figure 3: data serves as content for the 

3D/mono system. 

 

Without glasses, the monoscopic viewer will 

see IL and IR superimposed in both eyes. It is 

easy to derive from Equation (1) and (2) 

that: 
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Implementation 

In the original implementation, D is 

calculated using the following formula: 
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where R(x,y) is the red value of the pixel 

with coordinates (x,y) in the depth map. 

Because the depth map is a grey level 

picture, R(x,y) can be replaced by G(x,y) or 

B(x,y). From Equation (4) it follows that 

D(x,y) is in range [-1,+1] and that it can 

take on 256 different values. Furthermore, 

the range can be changed by multiplying D 

with another integer (the variable 

disparity-range in Figure 4).  

 

Pseudo-code of the algorithm is depicted 

in Figure 4(a). The actual source code is 

written in C. 

 

Optimizations 

The algorithm was optimized for the 

TriMedia processor using the following 

approach:  

a) First, algorithmic and arithmetic 

 

∂/∂x 

X 

a  a + b 

b  a - b 
D(x,y) ∆I(x,y) IL(x,y) 

IR(x,y) I(x,y) 
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optimizations are performed. Examples 

of such optimizations are reducing the 

control flow, converting floating point 

operations to fixed point (integer) ones, 

etc.  

b) Second, vectorization is employed. The 

R, G, B, and D data are packed into 

32-bit words, which allows to process 

them in parallel using the SIMD 

instructions of the TriMedia. 

 

Figure 4 illustrates the algorithmic and 

arithmetic optimizations. 

 

Figure 4: Algorithmic and arithmetic 

optimizations. 

  In Figure 4(a), the inner control flow  

(if (switch=right)) is removed by rendering 

the left and right image simultaneously. The 

outer control flow (if (the pixel is not on 

the edge)) is eliminated by employing the 

mux operation, which returns its second 

operand if the condition evaluates to be true 

and its third operand otherwise. Furthermore, 

the underlined floating point operations are 

converted to fixed point (integer) ones 

which replaces the division operation by a 

shift. In Figure 4, every operation depicted 

in italics actually consists of three 

operations associated with R, G and B.  

 

Figure 5 illustrates how the operations: 

∆I(x,y)=(I(x-1,y)-I(x+1,y))*D(x,y)>>8) can 

be implemented using the SIMD 

instructions of the TriMedia. The operation 

above includes the following three 

operations in deed:  

∆R(x,y)=(R(x+1,y)-R(x-1,y)).D>>8, 

∆G(x,y)=(G(x+1,y)-G(x-1,y)).D>>8, and  

∆B(x,y)=(B(x+1,y)-B(x-1,y)).D>>8. 

Without vectorization, those operations will 

be executed sequentially. 

 

 

 

R(x-1,y) G(x-1,y) B(x-1,y) D(x-1,y) 

 

 

R(x+1,y) G(x+1,y) B(x+1,y) D(x+1,y) 

 

R G B D 

 

 

D(x,y) D(x,y) D(x,y) D(x,y) 

 

 

∆R(x,y) ∆G(x,y) ∆B(x,y) …… 

 

Figure 5: Employing SIMD instructions.  

 

switch = left or right; 

for each pixel 

{if (the pixel is not on the edge) 

 {D(x,y)=2.0*(R(x,y)/255.0-0.5); 

 ∆I(x,y)=(I(x-1,y)-I(x+1,y))/2; 

∆I(x,y)= ∆I(x,y)*D(x,y)*disparity-range; 

 if (switch=right) 

  Out_I(x,y)=I(x,y)+ ∆I(x,y); 

 else 

  Out_I(x,y)=I(x,y)+ ∆I(x,y); 

 } 

else 

 Out_I(x,y)=I(x,y); 

}                    (a) 

for each pixel 

{ 

condition=the pixel is on the edge; 

D(x,y)=(R(x,y)-128)*disparity-range; 

∆I(x,y)=(I(x-1,y)-I(x+1,y))*D(x,y)>>8; 

 

IR(x,y)=I(x,y)+∆I(x,y); 

IL(x,y)=I(x,y)- ∆I(x,y); 

 

Out_IR(x,y)=mux(condition,I(x,y),IR(x,y)); 

Out_IL(x,y)=mux(condition,I(x,y),IL(x,y)); 

}                    (b) 

Word 

Byte 

SIMD-Subtraction 

SIMD-Multiplication 

Extract and vectorize MSBs of the products 
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From Figure 5, it can be seen that the 

operation is decomposed into a sequence of 

two SIMD operations -- subtraction and 

multiplication. In the SIMD-Multiplication, 

the MSBs of the products are extracted and 

vectorized, which is equivalent to shift 

every product 8 bits to the right. The result 

in the least-significant byte is discarded. The 

other operations in italics in Figure 4(b) can 

be vectorized in the similar way. 

 

Multi-threading 

To benefit from multiple processors, the 

program must be parallelized using multiple 

threads. The scheduler of Wasabi will 

automatically balance the workload on each 

processor by assigning threads to processors 

that are idle. Since the pixels of the original 

image and the depth map are stored in large 

arrays, the idea of multi-threading is to 

divide the arrays into equal pieces and to 

have each thread process a different piece 

(segment of the screen).  

.         

Experimental results 

The performance figures were obtained 

using a cycle-accurate simulator of the 

Wasabi architecture. All simulations 

associated with this algorithm were done 

using 2 frames of 720x576 input pixels.  

 

Figure 6 depicts the number of cycles 

required by the original code and that after 

the optimizations and vectorization. It can 

be seen that algorithmic and arithmetic 

optimizations improve performance by a 

factor of 12.3x. Vectorization yields another 

factor of 2.1x, so 25.8x in total. 

 

 

 

Figure 6: Execution time (the number of 

cycles) of the different program variants on 

a single TriMedia processor. 

 

Figure 7 shows the number of cache stall 

cycles that each program variant incurs.  

 

 

 

Figure 7: Number of cache stall cycles 

each program variant incurs. 

 

In Figure 7, the numbers of cache stall 

cycles decreases after the algorithmic and 

arithmetic optimizations. The reason is that 

in the original code IR and IL are computed 

sequentially. However, the cache cannot 

store the whole input image and its depth 

map. Therefore, when the second image is 

calculated, some of the input data, which 

was used for calculating of the previous 

image, must be reloaded from memory. In 

the program variant after algorithmic and 

arithmetic optimizations, IR and IL are 

computed interleaved so that the input 

image data is reused. After vectorization, the 
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number of cache stall cycles increases. 

Because the algorithm is accelerated, the 

processor accesses data much more quickly, 

which creates some extra cache stalls. 

 

The TriMedia processor can issue one 

very long instruction word (VLIW) every 

cycle and each VLIW consists of 5 

Basic_operations (called slots) such as add, 

load, etc. In practice there are two causes for 

not achieving an actual launch rate of 

5ops/cycle. (a) In compile time, the 

compiler might not be able to reveal 

sufficient ILP in the application program to 

always fill the 5 issue slots. In such cases it 

will insert useless ‘NOP’ operations. (b) In 

run time, as result of instruction cache or 

data cache misses, the processor will incur 

stall cycles. In stall cycles no new 

instructions are launched. Figure 8 shows 

the combined effect of these two causes in 

variable Efficiency. The Efficiency reflects 

the compactness of those Basic_operations 

in the VLIWs and can be define as: 

)5(_5

_

timeExecution

operationsBasic
Efficiency

•
=  

 

 

 

 

Figure 8: IPC for Instructions-per-cycle 

of the program variants.  

 

In Figure 8, the Efficiency of the original 

code is poor because it contains many 

control and data dependences. The 

algorithmic and arithmetic optimizations 

eliminate those dependences and the 

corresponding program variant achieves 

high Efficiency (almost 80% corresponding 

to 4 of the 5 slots filled with useful 

operations). After vectorization, the number 

of cache stall cycles increases while 

execution time decreases. Therefore, those 

stalls cause the Efficiency to decrease.  

 

To simulate the multi-threaded program, 

the simulator was configured with 9 

Trimedia processors, which is the number of 

TriMedias targeted for the Wasabi chip. 

Figure 9 displays the execution time as a 

function of the number of threads.  

 

 

Figure 9: Execution time on 9 Trimedia 

processors as a function of the number of 

threads.  

 

It can be seen from Figure 9 that the 

program scales well. When there are fewer 

threads than processors, the speedup is 

almost linear in the number of threads and, 

furthermore, when there are 9 threads, the 

speedup is almost a factor of 9x. Moreover, 

the amount of work per processor is very 

well balanced. Adding more threads could 

be beneficial if the work is unbalanced 

(because the scheduler assigns threads to 

processors that are idle) but here we see that 

the execution time increases slightly if more 

threads are added. This is because more 

threads imply more scheduling time. 

 

Note however that Figure 9 is limited in 
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its semantics. The data to draw that figure 

was gathered in the same way as for the 

earlier figures, meaning that only the 

application load of the system is measured, 

excluding the overhead of other system 

tasks. In particular the system thread 

scheduler itself was not measured. However, 

Figure 9 clearly shows that (a) the 

application allows for plenty of parallelism 

for this multi-processor and (b) the system 

infrastructure and memory hierarchy are 

capable of providing sufficient to keep all 

processors effectively busy. 

 

IV. MAPPING THE PARALLAX 

ALGORITHM ONTO WASABI 

 

In this section, we describe a novel 

3D-TV rendering algorithm [3], which 

generates a viewpoint-transferred image 

based on a primary image, and describe how 

that algorithm was mapped onto Wasabi. 

 

Description of the algorithm 

In Figure 10, the original and the 

viewpoint-transferred images are 

superimposed by making the original image 

half transparent. The image is blurred 

because the viewpoint-transferred image has 

a shift effect. 

 

 

Figure 10: Superimposed effect. 

 

Figure 11 shows a tree in front of a house 

with one scanline extracted.  

 

 

 

Figure 11: Rendering from image+depth: 

occlusions and deocclusions (example 

taken from [3, page 4]).  

 

It is clear in Figure 11 that the depth map 

helps us to know the relative position of 

every pixel to the original viewpoint. 

Obviously, while rendering the image from 

the new viewpoint, the introduced 

occlusions should be dealt with. Moreover, 

the camera in the original viewpoint does 

not record some parts of the background 

house. (i.e., we lack information to 

reconstruct the image from the new 

viewpoint.) One option to solve that is to 

reconstruct extra information about the 

background by using a filter and to insert 

the reconstructed information at the position 

of deocclusion. 

 

Implementation 

The main steps of the algorithm are that 

(a) the occluded parts are simply discarded, 

(b) the extra information about background, 

which fills in the hole of deocclusion, is 

generated by a filter and (c) the occluding 

parts are reconstructed to the new 

Mapped_positions in the output image., 

which depends on how much the viewpoint 

is transferred. In the implementation, (b) 

and (c) are integrated into one routine. A 

pseudo-code description of this routine is 

Scanline 

Depth of scanline 

Occlusion Deocclusion 

Original view Transferred view 
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given in Figure 12. 

 

Figure 12: Pseudo-code of the 

Reconstructing routine.  

 

Figure 13 illustrates the Reconstructing 

routine.  

 

 

 

 

 

 

 

 

Figure 13: Illustration of the 

Reconstructing routine. 

a:Last_progressed_position, b:Right,  

c: Mapped_position d:Left, 

e:Next-progressed-position. 

In Figure 13, the pixel positions in both 

the input and output scanlines are 

consecutive integers. The occluding 

segment from pixel P0 to P1 is mapped to 

the segment from dx to dn in the output 

scanline. In the case illustrated by Figure 13, 

the do-while loop in Figure 12 is executed 

two times. The number of the loop times is 

guarded by the value of W. W is the red area 

(W = ∫
c

b
f1) in the first iteration and the 

dark pale area (W = ∫
c

b
f2) in the second. 

Consequently, the R, G, B values of P0 are 

decomposed into Mapped_position and 

Mapped_position + 1. Furthermore, in the 

case shown in Figure 13, the whole 

Reconstructing routine is also computed 

two times. First, Progressed_position is 

dx (t=0) and, second, 

Progressed_position progresses to 

Next_progressed_position (t=1). 

 

Optimizations 

The following optimizations have been 

performed: 

a) Simplification of the filter. 

b) Algorithmic and arithmetic 

optimizations. 

c) Vectorization. 

 

The filters can be modeled as functions. 

Figure 14 shows three filters: the Box filter, 

the Tent filter and the Mitchell filter. In 

principle, the quality of the output image is 

positively correlated with the order of the 

filter function. It is obvious that high order 

filter functions are computationally more 

expensive. We therefore want to use a lower 

order filter that maintains the quality of the 

output image. We found that Using Box 

filter, the output image hardly depredates. 

Hereby, the Box filter is chosen and further 

optimizations are based on that. 

Reconstructing( ) 

Progressed _position=dx + t*subsegment;  

//t is recursive times of the routine subtrat 1 

//subsegment=(dn-dx)/(t+1). 

Mapped_position= 

integer around Progressed_position;  

Left= 

(last_progressed_position + progressed_position)/2 - 

Mapped_position; 

Right= 

(next_progressed_position + progressed_position)/2 - 

Mapped_position; 

// Mapped_position is supposed to be the origin. 

do{ 

W=filter_function(Right)-filter_function(Left);  

Out_R(mapped_position, y) += W * R(x,y);  

Out_G(mapped_position, y) += W * G(x,y); 

Out_B(mapped_position, y) += W * B(x,y); 

//Out_R, Out_G, Out_B are arrays storing  

//red green/ blue values for output image. 

Mapped_position++;  

Left - - ; Right - -; 

}while(W>0) 

} 

  

f1 f2 
Output scanline 

Intput scanline 

a b 
c 
d 

dx 
dn 

P0 P1 

e 
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Figure 14: Filter functions. a,b,c,d,e,f,g,h 

and i are all constants. 

 

The code profiling shows that the part of 

discarding occluded parts (step (a) of the 

algorithm) costs every little. Therefore, the 

main effort of algorithmic and arithmetic 

optimizations is only targeted at the 

Reconstructing routine. 

 

From Figure 13, it can be seen that the 

Mapped_position always accumulates 1 or 

0 but never negative values. Hereby, when 

the Mapped_position progresses, the pixel 

before it can be rendered out. As a result, in 

the actual implementation, register variables 

can be used to replace the arrays (Out_R, 

Out_G, Out_B in Figure 12). Consequently, 

the values in the registers are not written to 

memory until the Mapped_position 

proceeds. It implies that if the 

Mapped_position is the same, the values 

will stay in the registers, which saves 

writing the results to memory.    

 

Moreover, because of the simplicity of 

the Box filter, the operation W = 

filter_function(Right)-filter_function(Left) 

can be implemented as W = Clip(-0.5, 

Right, 0.5) - Clip(-0.5, Left, 0.5). The call 

Clip(-0.5, x, 0.5) returns –0.5 if x is less 

than –0.5, 0.5 if x is greater than 0.5, and x 

otherwise. 

 

In addition, the do-while loop in Figure 

12 can be unrolled, because Right - Left 

will never be greater than 2 (i.e., the loop 

will be executed no more than 3 times.) 

Hence, we can unroll the loop for 3 times 

and, of course, add some extra 

corresponding modifications. Unrolling the 

loop eliminates many branches that the 

compiler generates. Consequently, that 

optimization reduces the branch delay 

penalty and speeds up the algorithm. 

 

Figure 15 illustrates how the operations 

W*R(x,y), W*G(x,y), and W*B(x,y) in 

Figure 12 are vectorized. 

 

 

 

R(x1,y) G(x1,y) B(x1,y) D(x1,y) 

 

 

W W W W 

 

 

R G B D 

 

 

Out_R(x,y) Out_G(x,y) Out_B(x,y) … 

Figure 15: Vectorization. 

 

In Figure 15, the word of Ws can come 

from a look-up table whose index is a 

concatenation of Right and Left. The 

primary value of W is in [0,1] but here 

every W is magnified by 128 times. The 

reasons to do that are (a) every W will not 

exceed 8 bits so that it can be vectorized, 

and (b) after the parallel multiplication, only 

the MSB of each product is extracted and 

vectorized. If W is not enlarged, accuracy 

0      (x < -0.5) 

Y=  x+0.5 (-0.5 ≤≤≤≤ x <0.5) 

0 (x > 0.5) 

 

(a)Box filter 

0            (x < -1) 

Y=     0.5x2+x+0.5  (-1 ≤≤≤≤ x < 0) 

0.5x2-x+0.5  (0 ≤≤≤≤ x ≤≤≤≤ 1) 

      0         (x > 1) 

(b)Tent filter 

0                             (x < -2) 

a + x * (b- x * (c- x * (d- f * x))     (-2 ≤≤≤≤ x <-1) 

Y=          0.5 + x * (g+ x2 
* (h - i * x))       (-1 ≤≤≤≤ x <0) 

0.5 + x * (g+x2 
* (h + i * x))        (0 ≤≤≤≤ x <1) 

1- a + x * (b+ x*(c + x * (d + f * x))  (1 ≤≤≤≤ x ≤≤≤≤2) 

0                              (x > 2) 

(C) Mitchell filter 

Word 

Byte 

SIMD-Multiplication 

Shift every byte 1 bit to the left 

Extract and vectorize MSBs of the products 
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will be lost. Even though, every product has 

to shift 1 bit left at the end in order to keep 

the accuracy. 

 

Multi-threading 

In this algorithm, the arrays storing the 

normal image and its depth map cannot be 

distributed and divided flexibly because the 

computations are based on scanlines (fixed 

number of pixels). But we can process 

several scanlines in one thread. Therefore, 

the number of threads generated is equal to 

the number of scanlines divided by N. 

Obviously, when N=1 (i.e., each thread 

processes a single scanline), the 

multi-threaded implementation is much 

simpler. In addition, from Figure 9, it can be 

concluded that the overhead of the scheduler 

is rather small. Therefore, the performance 

results of the simple solution (N=1) can be 

representative of the results we need. 

 

Experimental Results 

All simulations for this algorithm were 

performed with 2 frames of 640x1080 pixels. 

Figure 16 depicts the execution time of the 

original code with different filters and that 

after the optimizations and vectorization 

(using the Box filter).  

 

 

 

 

 

 

 

Figure 16: Execution time of the parallax 

algorithm on a single Trimedia processor.  

It can be seen from Figure 16 that the 

performance improves by around 25% by 

simplifying the filter. And the algorithmic 

and arithmetic optimizations save additional 

90 million cycles. Finally, vectorization 

speeds up the algorithm by another factor of 

1.5x compared to the implementation after 

algorithmic and arithmetic optimizations. In 

total, the algorithm is accelerated by 

approximately a factor of 6.5x compared to 

the original code with the Mitchell filter. 

The resulting execution time is around 25 

million cycles.  

 

Figure 17 gives the number of cache stall 

cycles each program variant incurs. It shows 

that the number of cache stall cycles is 

almost unaffected by the filter that is 

employed. That is expected because 

changing the filter does not change the 

structure of the code. Algorithmic and 

arithmetic optimizations and again 

vectorization increases the number of cache 

stall cycles. The reason is partially that the 

cache stalls can no longer be hidden because 

the code is faster. 

 

 

 

 

 

 

 

Figure 17: Number of cache stall cycles 

incurred by the different implementations 

of the parallax algorithm.  

 

Figure 18 shows the Efficiency of the 
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different implementations of the parallax 

algorithm. Changing the filter does not 

affect the Efficiency either, because 

simplifying the filter does not only decrease 

the number of NOPs but also the number of 

effective operations. The increase of 

Efficiency after algorithmic and arithmetic 

optimizations is due to the reduction of 

control dependencies and converting 

floating point operations to integer ones. 

Consequently, the VLIWs contain more 

useful operations. After vectorization, the 

effect of cache stalls cannot be ignored any 

longer. Because the number of cache stall 

cycles increases relatively more while the 

number of execution cycles decreases, the 

Efficiency after vectorization is smaller than 

before vectorization. 

 

 

 

 

 

 

 

 

Figure 18: Efficiency of the different 

implementations of the parallax 

algorithm on a single TriMedia processor.  

 

We now discuss the performance of the 

multi-threaded program. With 2 frames of 

640x1080 input pixels, 1080 threads are 

generated. Again, the simulator was 

configured with 9 TriMedia processors. The 

resulting execution time is 3.8 million 

cycles. And the total workload of the 9 

TriMedias is 27.9 million cycles. It can be 

seen that the total workload is roughly 9 

times as much as the execution time. It 

implies that the workload on each processor 

is well balanced. Due to scheduling 

overhead, 9 times the execution time is 

slightly larger than the total workload. In 

addition, the total workload is also larger 

than the execution time obtained after 

vectorization on a single processor. That 

should also be attributed to scheduling 

overhead. 

 

V. CONCLUSIONS AND FUTURE WORK 

 

Given the cost of 3D-TV, Philips 

Research prefers to implement all 3D-TV 

applications on a single Wasabi chip. 

Consequently, the 3D rendering algorithm 

should occupy as few TriMedia processors 

as possible in order to leave processing time 

for some other 3D-TV applications.  

 

The glassed-based algorithm perfectly 

matches this requirement. Even without 

exploiting thread-level parallelism, the 

algorithm runs in less than 5 million cycles 

on Wasabi. Assuming that the frequency of 

the TriMedia is 300MHz, one TriMedia 

processor is enough to render 60 pairs of   

output images per second, which matches 

the real-time requirement. Then, the other 8 

TriMedias on Wasabi can be assigned to 

other applications. But people should wear a 

pair of special glasses to see the 3D effect 

and they get a common 2D effect by bare 

eyes.  

 

Philips Research therefore advocates 

another algorithm - filtering occlusions and 

filling in deocclusions - whose 3D effect can 

be seen by our bare eyes. The output of this 

algorithm is a viewpoint-transferred image 

that is calculated from the original image 

and mixed by 3 basic colors (red, green and 

blue). Once we have that image, we can 
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generate 9 of such images, which are 

computed in different viewpoints and each 

of those images only contains one basic 

color. In the final rendering, 9 single color 

images with different viewpoints are 

integrated and interleaved into one frame 

and, then, that 9-view frame is projected on 

an LCD. Finally, through a special physical 

lens in front of the LCD, people will see the 

3D effect.  

 

Similar to the previous algorithm, the 

requirement is to render 60 of those 9-view 

frames per second, our experimental result 

-27.9 million cycles for one image with 3 

basic colors- should, at least, be tripled. 

Therefore, 16 Trimedias or 2 Wasabi chip 

are needed to execute this algorithm in 

real-time. It seems to be expensive. So the 

future work is to develop another algorithm 

that is computationally less expensive or to 

optimize the parallax algorithm further, 

which is possible to design and develop 

some special hardware integrated in Wasabi 

to perform some parts of the algorithm. 
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