US006886091B1

a2 United States Patent

10y Patent No.: US 6,886,091 B1

Vissers et al. 5) Date of Patent: Apr. 26, 2005
(549) REPLACING VLIW OPERATION WITH 5974537 A * 10/1999 Mehraccccccceenne. 712/215
EQUIVALENT OPERATION REQUIRING 6,076,154 A 6/2000 Van Eijndhoven et al. ... 712/24
FEWER ISSUE SLOTS 6,134,633 A 10/2000 Jacobsceceeeeeeeeenn. 711/137
6,226,715 Bl 5/2001 Van Der Wolf et al. 711/133
. : s 6,336,182 B1 * 1/2002 Derrick et al. 712/204
(75) Inventors: I%OSI‘I.IEI{}[S A. Y}Sslirsﬁunnyvgle’ JCA 2002/0019927 Al * 2/2002 Hondou . 712214
(C A)(,US)?ch(fs van 'Eijl(::ll;%v einV\?aS;l,r . 2003/0067473 Al * 4/2003 Taylor et al. 345/561
(NL) * cited by examiner
(73) Assignee: Koninklijke Philips Electronics N.V., Primary Examiner—Kenneth S. Kim
Eindhoven (NL) (57) ABSTRACT
(*) Notice: Subject. to any disclaimer,. the term of this Super functional units are used to execute not only single
patent is extended or adjusted under 35 super-instructions that take more than one issue slot, but also
U.S.C. 154(b) by 466 days. a number of equivalent regular VLIW instructions.
Accordingly, the same hardware can thus be used to execute
(21) Appl. No.: 09/895,473 either a superoperation or a combination of regular
S operations, potentially combined with other smaller super-
(22) Filed: Jun. 29, 2001 operations. Using super functional units in this way pro-
(51) Int. CL7 oo GO6F 7/38 motes efficient use of computing resources by making
. . . computing resources that might otherwise be used unnec-
(52) US.CL ... 712/24; 712/215; 712/226; o b ! bl £ by siolos]
717/140 essarily by superoperations available for use by single-slot
(58) Field of Searchc.c.c.... 712/24, 215, 226, instructions or by smaller superoperations. In some
712/23: 717/140 embodiments, a compiler analyzes program and other data
’ to identify superoperations that can be reduced to equivalent
(56) References Cited single-slot instructions. The compiler maps these operations

U.S. PATENT DOCUMENTS

5,689,674 A
5,862,399 A

* 11/1997 Griffith et al. 712/217
* 1/1999 Slavenburg et al. 712/24

RECEIVE OPERATIONS AND
DEPENDENCIES

REDUCE

SUPEROPERATION

to a single slot of a super functional unit, reducing the
computing resources occupied by the operation.

34 Claims, 5 Drawing Sheets

OMMANDS CAN
PLACED

Bl
54
4

UPDATE INSTRUCTION

L

SELECT NEXT WORD

U.S. Patent Apr. 26, 2005

10\‘

Sheet 1 of 5 US 6,886,091 Bl

CONTROL UNIT
12

———>|

FETCH UNIT
16

DECODER UNIT
18

FUNCTIONAL UNITS
14

SUPEROP
UNIT
22

¥

REGISTER FILE
20

FIG. 1

U.S. Patent

Apr. 26, 2005

START

-

RECEIVE OPERATIONS AND
DEPENDENCIES

ﬂ/42

Sheet 2 of 5

)

US 6,886,091 B1

YES

44

/4

SELECT OPERATION

NO

REDUCIBLE
SUPEROPERATION?2

REDUCE
SUPEROPERATION

STOP

Y

SELECT INSTRUCTION
WORD

50

56

OMMANDS CANB
PLACED

UPDATE INSTRUCTION
WORD

FIG. 2

V4

SELECT NEXT WORD

U.S. Patent Apr. 26, 2005 Sheet 3 of 5 US 6,886,091 B1

------ 70A

US 6,880,091 B1

Sheet 4 Of 5

Apr. 2 69 2005

& QUTPUT

koo
lllll
e

~
t LI r
= nuu.-.A ,1/11
...........
T 0 0 s
-Il s
A
»
\\\\\
e <
C snell_ N
................
........
\\\\\\\\\\\\\\
....
W = \\8\\\ @
- -
-
l\\l
<L O E 8

R1

|||||||
llllllllll

llllllllll

.7
gl

-
L~

s

-

-
g
-

-
-~
el

-
>

et
-r
P

(42} N~
\\\\\\
-
w o
...................
JPProEet S
-— 0
.
\\\\\
>
- -
REI o e
\\l | PUPRDRR ol i
P
[an] o \
— B
T2zl .
=TT
I
ey
xll
.
e
B e S
N
(o] -
.
..
.
!I'
Te} o

R3

FIG. 4

U.S. Patent Apr. 26, 2005 Sheet 5 of 5 US 6,886,091 B1

(START j
L .

RECEIVE INSTRUCTION /V

86

82 /4

DETERMINE SLOT FOR
EXECUTING INSTRUCTION

SUPEROPERATIO
REQUIRED?

MAP INSTRUCTION TO
SUPEROP UNIT

EXECUTE INSTRUCTICN

l
D

FIG. 5

US 6,886,091 B1

1

REPLACING VLIW OPERATION WITH
EQUIVALENT OPERATION REQUIRING
FEWER ISSUE SLOTS

TECHNICAL FIELD

The invention relates to programmable processors and,
more particularly, execution of instructions in such proces-
SOrs.

BACKGROUND

A multi-slot processor uses multiple independent func-
tional units to process operations in parallel. One common
example of a multi-slot processor is a very long instruction
word (VLIW) processor. A VLIW instruction packages
multiple basic commands or operations into a single instruc-
tion. Typically, each such basic command represents a RISC
operation and includes an opcode, two source operand
definitions, and a result operand definition. The source
operand definitions and the result operand definition refer to
registers in the register file. During execution of the
command, the source operands are read from the particular
issue slot by supplying fetch signals to the read ports
associated with the issue slot in order to fetch the operands.
The functional unit typically receives the operands from
these read ports, executes the command according to the
opcode, and writes back a result into the register file via the
write port associated with the particular issue slot.
Alternatively, commands may use fewer than two operands
and/or produce no result for the register file.

VLIW processors may include a plurality of instruction
slots, also known as issue slots, and each slot may execute
one operation of the VLIW instruction. Each slot may have
an associated set of functional units, but generally, only one
functional unit in a given slot may be used at any given time.
Each issue slot is also associated with two read ports and one
write port to a register file. The functional units may be
pipelined to increase processing speed.

U.S. Pat. No. 6,076,154, issued to Van Eijndhoven et al.
on Jun. 13, 2000 and assigned to U.S. Philips Corporation,
the disclosure of which is incorporated herein in its entirety,
describes a VLIW processor having functional units that are
conceptually more than one issue slot wide. These functional
units are known as superoperational functional units or,
equivalently, super functional units. Super functional units
can execute instructions, known as superop instructions or
superoperations, that have an opcode and several registers as
operands. For example, a transpose instruction uses four
input registers and two output registers. Superoperations can
be considered to take the computing resources of more than
one regular VLIW instruction.

SUMMARY

In general, the invention is directed to techniques for
using super functional units to execute not only single
super-instructions that take more than one issue slot, but also
a number of regular VLIW instructions. In other words, the
same hardware can thus be used to execute either a super-
operation or a combination of regular operations, potentially
combined with other smaller superoperations. In this way,
the techniques promote efficient use of computing resources
by taking advantage of computing resources that might
otherwise be wasted by superoperations, and making the
computing resources available for use by single-slot instruc-
tions or by smaller superoperations.

10

20

25

30

35

40

45

55

60

65

2

In some embodiments, the invention may involve analyz-
ing program and other data to identify superoperations that
can be reduced to, i.e., replaced by, equivalent single-slot
instructions. Such operations may be mapped to a single slot
of a super functional unit or to other conventional single
issue functional units, thereby reducing the computing
resources occupied by the operation.

One embodiment is directed to a method of compiling a
software program for a programmable processor having a
super functional unit associated with at least two issue slots.
A compiler receives a set of processor-executable operations
that includes a superoperation typically associated with at
least two issue slots. The compiler analyzes parameters for
the operation, for example, and determines whether the
superoperation can be replaced by a processor-executable
operation associated with fewer than all of the issue slots
associated with the functional unit.

In another embodiment, a compiler receives a processor-
executable superoperation and determines a number of input
registers and a number of output registers that are used by
the superoperation. When the superoperation uses at most
two input registers and one output register, the compiler
replaces the superoperation with an equivalent single-slot
operation.

Still another embodiment is directed to a method of
executing an instruction by a processor having a super
functional unit. The processor determines whether the
instruction can be executed using fewer than all of the issue
slots associated with the super functional unit. When the
instruction can be executed using fewer than all of the issue
slots, the processor maps the instruction to fewer than all of
the issue slots.

Other embodiments of the invention include methods for
compiling programs for performing these methods, as well
as computer-readable media and apparatuses for performing
these methods. The above summary of the invention is not
intended to describe every embodiment of the invention. The
details of one or more embodiments of the invention are set
forth in the accompanying drawings and the description
below. Other features, objects, and advantages of the inven-
tion will be apparent from the description and drawings, and
from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an example pro-
grammable processor arranged to use super functional units,
according to one embodiment of the invention.

FIG. 2 is a flow chart illustrating a mode of operation for
compiling a program.

FIG. 3 is a diagram illustrating placement of operations
into instruction words according to one operational example
of the invention.

FIG. 4 is a diagram illustrating an operational example of
the invention.

FIG. 5 is a flow chart illustrating a mode of operation for
mapping processor instructions to functional units.

DETAILED DESCRIPTION

In general, the invention facilitates the use of super
functional units to execute combinations of regular VLIW
instructions, smaller superoperations, or both, in addition to
executing superoperations. Further, a single super functional
unit can be used to execute multiple single slot VLIW
instructions, potentially combined with other smaller super-
operations. This mode of operation prevents the scheduling

US 6,886,091 B1

3

of regular operations from unnecessarily blocking issue slots
that could otherwise be used to execute other instructions.
Efficient use of computing resources is thus promoted.

In some embodiments, a compiler analyzes program and
other data to identify superoperations that can be reduced to,
i.e., replaced by, equivalent single-slot instructions. The
compiler maps such operations to a single slot of a super
functional unit, thereby reducing the computing resources
occupied by the operation.

In this detailed description, reference is made to the
accompanying drawings that form a part hereof, and in
which are shown by way of illustration specific embodi-
ments in which the invention may be practiced. It is under-
stood that other embodiments can be utilized and structural
changes can be made without departing from the scope of
the invention.

FIG. 1 is a block diagram illustrating a programmable
processor 10 arranged to use super functional units in a
manner consistent with the principles of the invention. The
description of FIG. 1 is intended to provide a brief, general
description of suitable processor hardware and a suitable
processing environment with which the invention may be
implemented. Although not required, the invention is
described in the general context of instructions being com-
piled or executed by processor 10.

As shown in FIG. 1, processor 10 includes control unit 12
coupled to one or more functional units 14. Control unit 12
controls the flow of instructions and/or data through func-
tional units 14. For example, during the processing of an
instruction, control unit 12 directs the various components
of processor 10 to fetch and decode the instructions, and to
correctly perform the corresponding operations using, for
example, functional units 14. Additional units such as fetch
unit 16, decode unit 18, or a decompression unit may be
coupled to functional units 14 and controlled by control unit
12. In addition, functional units 14 are also coupled to a
register file 20, which stores both the operands and the
results of operations.

Under the direction of control unit 12, decode unit 18
pre-processes the instructions to ready them for execution by
functional units 14. For example, decode unit 18 may
decompress and decrypt complex instructions into an
executable form, referred to as executable instructions, and
parse the executable instructions to identify one or more
specified operations and corresponding operands. A com-
piler may compress and/or encrypt the complex instructions
using various techniques, which can significantly reduce the
amount of memory needed to store the instructions, particu-
larly when instructions support multiple operations, as is the
case with the instructions supported by most Very Long
Instruction Word (VLIW) architectures. Information for
decompressing or decrypting an instruction, such as a digital
key, may be fixed in hardware, stored in static memory, or
stored in the preceding instruction within the instruction
stream.

Functional units 14 receive the instructions in executable
form from decode unit 18 and carry out the operations
specified by the instructions. Functional units 14 may con-
tain specialized hardware for performing the various opera-
tions including, for example, one or more arithmetic logic
units (ALUs), floating-point units (FPUs), barrel shifters,
and load/store units. As described above, register file 20
stores results or other data during the processing of instruc-
tions.

In some implementations, functional units 14 are pipe-
lined such that operations can be loaded into a first stage of

10

15

20

25

30

35

40

45

50

55

60

65

4

a pipelined functional unit and processed through subse-
quent stages. A stage processes concurrently with the other
stages. Data passes between the stages in the pipelined
functional units during a cycle of the system. The results of
the operations emerge at the end of the pipelined functional
units in rapid succession. In other implementations, func-
tional units 14 are not pipelined.

Though not required, in one mode of operation, fetch unit
16 receives an instruction from an instruction stream. This
instruction is then decoded by decode unit 18, and delegated
to the appropriate functional unit 14 by control unit 12.
Functional unit 14 retrieves the operand or operands from
register file 20, executes the instruction, and writes the result
of the operation into register file 20.

The methods and techniques described herein can be
implemented in connection with a variety of different pro-
cessors. For example, processor 10 can be any of a variety
of processor types, such as a reduced instruction set com-
puting (RISC) processor, a complex instruction set comput-
ing (CISC) processor, variations of conventional RISC pro-
cessors or CISC processors, or a very long instruction word
(VLIW) processor. By way of example, some details of the
invention will be described in the context of a VLIW
processor. It should be noted, however, that the invention is
not limited in implementation to any particular type of
processor, and any description of a particular processor type
should not be construed to limit the scope of the invention.

The VLIW architecture may include a plurality of instruc-
tion slots each having an associated set of functional units
14, and each slot may be adapted to execute one operation
of a VLIW instruction. In some implementations, the VLIW
processor allows issue of five operations in each clock cycle
according to a set of specific issue rules. The issue rules
impose issue time constraints and result writeback con-
straints. Issue time constraints result because each operation
implies a need for a particular type of functional unit.
Accordingly, each operation requires an issue slot that has an
instance of the appropriate functional unit type attached.
These functional units require time to recover after perform-
ing an operation, and during this recovery time, other
operations that require a functional unit that is being recov-
ered cannot be performed. Writeback constraints result
because no more than five results should be simultaneously
written to register file 20. Any set of operations that meets
the issue time and result writeback constraints constitutes a
legal instruction.

In one embodiment of the invention, processor 10
includes at least one superop unit 22 coupled to control unit
12. Superop unit 22 is associated with more than two read
ports and/or more than one write port to a register file 20. For
example, a superop unit 22 for executing a transpose instruc-
tion uses four input registers and two output registers in the
register file 20. Because superop unit 22 uses more registers
than a regular functional unit, which uses two input registers
and one output register, superop unit 22 is associated with
more than one issue slot and can implement instructions that
take more than one issue slot. While a significant portion of
this description relates most particularly to super functional
units having two issue slots, it is noted that superop unit 22
may have three or more issue slots.

According to an embodiment of the invention, processor
10 can use superop unit 22 to execute either a superoperation
or a combination of regular operations, possibly combined
with other smaller superoperations. For example, a superop
unit 22 that takes two issue slots can be used to execute a
superoperation that also takes two issue slots or,
alternatively, two regular operations that each take one issue
slot.

US 6,886,091 B1

-

d

Processor 10 typically includes or is used in conjunction
with some form of processor readable media. By way of
example, and not limitation, processor readable media may
comprise computer storage media and/or communication
media. Computer storage media includes volatile and
nonvolatile, removable and nonremovable media imple-
mented in any method or technology for storage of infor-
mation such as processor-readable instructions, data
structures, program modules, or other data. Computer stor-
age media includes, but is not limited to, random access
memory (RAM), read-only memory (ROM), EEPROM,
flash memory, CD-ROM, digital versatile discs (DVD) or
other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium that can be used to store the desired
information and that can be accessed by processor 10.
Communication media typically embodies processor read-
able instructions, data structures, program modules, or other
data in a modulated data signal, such as a carrier wave or
other transport medium and includes any information deliv-
ery media. The term “modulated data signal” means a signal
that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By
way of example, and not limitation, communication media
includes wired media, such as a wired network or direct-
wired connection, and wireless media, such as acoustic, RF,
infrared, and other wireless media. Computer readable
media may also include combinations of any of the media
described above.

FIG. 2 is a flow chart illustrating a mode of operation for
compiling a program in order to generate the instruction for
execution by processor 10. In compiling a program, the
compiler may describe a program in terms of a number of
commands with data dependencies between the commands,
and searches for a way of placing all commands in a set of
instruction words. During this process, the compiler use the
techniques described herein to reduce the number of instruc-
tion words that need to be executed sequentially during
execution of the program.

To compile a program, the compiler first receives a set of
operations together with a specification of data dependencies
between operations (40). Some of the operations thus
received may be superoperations that consume more than
one issue slot. Next, the compiler analyzes the data depen-
dencies and searches for a way to place commands for the
operations in a set of instruction words (42). Once all of the
commands have been incorporated into a set of instruction
words, the compiler terminates the compilation process. If
not, the compiler selects an operation for which no com-
mand has yet been placed and for which preceding source
operations that produce its operands have already been
placed (44).

If the selected operation is a superoperation, the compiler
analyzes it and associated data and determines whether the
superoperation can be reduced to a regular operation (46). In
connection with this analysis, the compiler identifies which
input and/or output registers are used by the superoperation.
If the compiler determines, for example, that a particular
superoperation would not use more than two input registers,
it reduces the superoperation to a regular operation (48), as
the additional input registers used by the superoperation are
not necessary. As another example, the compiler may deter-
mine that a superoperation typically requiring five issue slots
may only need four or fewer slots due the actually data being
processed, and therefore can be reduced. On the other hand,
if the selected operation is a regular operation or an irre-
ducible superoperation, the compiler does not reduce the
selected operation.

10

15

20

25

30

35

40

45

50

55

60

65

6

In either case, the compiler then selects an instruction
word from the set of eligible instruction words (50). In
particular, an instruction word is eligible for placing a
command for the selected operation if it occurs after the
instruction words in which commands for the selected
operation’s source operations, which produce the operands
of the selected operation, have been placed. Next, the
compiler determines whether it can construct an instruction
word that contains the commands already included in that
earliest instruction word plus a command for the selected
operation (52). If the operation is a reducible superoperation,
the compiler substitutes an equivalent regular operation or
smaller superoperation when placing the operation into an
instruction word. In this manner, the compiler avoids unnec-
essary use of issue slots that are not needed by the operation.
Such issue slots, which would otherwise be unavailable for
use by other operations, are thereby made available to be
used by other operations.

The compiler may consider the nature of the commands
and the grouping of the functional units into issue slots when
determining whether to place the commands in different
groups of functional units, and thereby reserve the issue slots
of the super functional units for the superoperation.

If the compiler can construct an instruction word that
contains the commands already included in the selected
instruction word and also a command for the selected
operation, the compiler updates the selected instruction
word to incorporate the command (54) and the process
repeats (42). If the compiler cannot construct such an
instruction word, however, the compiler instead selects an
instruction word subsequent to the selected instruction word
(56) and attempts to construct an instruction word with the
newly selected instruction word (52). This process repeats
until either the compiler identifies a suitable command for
incorporation within the selected instruction or exhausts the
set of operations.

In general, minimization is performed under constraints
of data dependencies between commands. For example, if a
first command uses as input a result from a second
command, these commands should be placed in different
instruction words, and the instruction word that contains the
first command should follow the instruction word that
contains the second command. Moreover, the minimization
is performed under the constraint that the functional units
are capable of starting execution of all commands in parallel
for each instruction word.

FIG. 3 is a diagram illustrating an example placement of
a set of operations into one or more instruction words. In
FIG. 3, one set of nodes conceptually represents operations
60A, 60B, 60C, and 60D, collectively referred to as opera-
tions 60. Another set of nodes conceptually represents issue
slots 70A, 70B, 70C, 70D, and 70E, collectively referred to
as issue slots 70. These issue slots are each associated with
a group that contains a functional unit capable of performing
the relevant operation. Superoperations 60C and 60D nor-
mally map to two or more issue slots. Regular operations
60A and 60B, on the other hand, map to single issue slots.

If neither superoperation is reduced to a regular operation
that maps to only one issue slot, it may be observed that
there are insufficient issue slots to map all of the operations.
In this example, however, if the compiler determines that
one of the superoperations, e.g., superoperation 60D, can be
reduced to a regular operation, the compiler maps the
superoperation to a single issue slot. As depicted by the
heavy line in FIG. 3, the compiler maps superoperation 60D
to issue slot 70B. With this superoperation thus reduced to

US 6,886,091 B1

7

a regular operation, the compiler is able to map all of the
operations into instruction words.

An appreciation of the operation of the invention can be
gained by consideration of an operational example. In this
example, a shuffle operation is considered:

SH R1, R2, R3—R4 (, R5)

This operation permutes and/or selects numbers stored in
registers R1 and R2 according to a permutation specified in
shuffle register R3. The numbers are stored in permuted
order in register R4 and, optionally, register RS. FIG. 4
conceptually illustrates the shuffle operation of this opera-
tional example. The shuffle operation normally uses three
input registers—two operand registers and one shuffle
register—and one or two output registers, depending on
whether optional output register RS is used. Accordingly,
because regular operations can only use two input registers
and one output registers, the shuffle operation would nor-
mally be a superoperation that would require two or more
issue slots.

In this example, however, the compiler can analyze the
data and make two determinations. First, because shuffle
register R3 is only eight bytes wide, the output of the shuffle
operation will also be eight bytes wide. As a result, register
RS is not used in this case. It is noted that if shuffle register
R3 were greater than eight bytes wide, the output of the
shuffle operation would also be greater than eight bytes
wide, and register RS would be used. If register RS were
used, the compiler would not be able to map the shuffle
operation to one issue slot, as the operation would use more
than one output register. The second determination is that no
byte in shuffle register R3 has a value greater than 7 and, as
aresult, the second operand register R2 is also not used. That
is, none of the bits in the second operand register R2 affect
the output of the shuffle operation.

Accordingly, the shuffle operation in this case only
requires two input registers, namely, operand register R1 and
shuffle register R3, and one output register. The compiler
therefore reduces the shuffle operation from a superopera-
tion to a regular operation by replacing the superoperation
with an equivalent regular operation that only uses one issue
slot. Any other issue slots that would otherwise have been
occupied by the superoperation are thus freed for use by
other single slot instructions or by superoperations of lesser
width.

The invention is not limited to use with super functional
units that have two issue slots. The principles of the inven-
tion are equally applicable to super functional units that have
three or more issue slots. For example, a super functional
unit that has four issue slots can function as two super
functional units that each have two issue slots, or as a super
functional unit that has three issue slots and a regular
functional unit that has one issue slot.

In addition, while the above-described examples assume
that the compiler reduces superoperations to regular opera-
tions or to smaller superoperations, the invention is not so
limited. For example, processor 10 of FIG. 1 can map
superoperations to a subset of issue slots of superop unit 22
at run time. After processor 10 receives an instruction via
fetch unit 16 of FIG. 1 and decodes the instruction using
decode unit 18 (80), control unit 12 analyzes the instruction
and other data for the superoperation to determine whether
processor 10 must necessarily execute the instruction as a
superoperation or whether processor 10 can instead map the
instruction to a subset of the functional units (82). Fetch unit
16, decode unit 18, or both, possibly in combination with
other components, may be involved in this analysis.

10

15

20

25

30

35

40

45

50

55

60

65

8

If the instruction must be executed as a superoperation,
processor 10 maps the instruction to a super functional unit,
such as superop unit 22 of FIG. 1 (84). On the other hand,
if processor 10 determines that the instruction can be
mapped to a single functional unit, processor 10 optionally
determines which slot or slots of the super functional unit to
use for executing the instruction (86). Processor 10 makes
this determination by analyzing the data associated with the
instruction and any applicable constraints. For example, if
processor 10 determines that a particular superoperation
would not use more than two input registers, it would map
the instruction to a subset of the issue slots, e.g., a single slot,
of the super functional unit, as the additional input registers
would not be necessary. Processor 10 determines which slot
to use based on, for example, the type of operation and any
constraints, such as limitations as to the number of opera-
tions of a particular type that can be performed simulta-
neously. While there may be some architectural or other
constraints on the maximum number of single operations
that can be mapped onto the super functional unit, the
invention offers improved flexibility in assigning instruc-
tions to slots.

Processor 10 then executes the instruction using either the
entire super functional unit or the selected slot or slots of the
super functional unit (88). To execute the instruction, the
super functional unit retrieves the operand or operands from
register file 20, executes the instruction, and writes the result
of the operation into register file 20.

It is to be understood that, even though numerous char-
acteristics and advantages of various embodiments of the
invention have been set forth in the foregoing description,
together with details of the structure and function of various
embodiments of the invention, this disclosure is illustrative
only, and changes may be made within the principles of the
invention to the full extent indicated by the broad general
meaning of the terms in which the appended claims are
expressed. For instance, instead of using the compiler to
map reducible superoperations to single issue slots, the
developer can instead use a predefined function intrinsic to
reduce superoperations to single-slot operations under cer-
tain circumstances as determined by the developer. This
implementation may be advantageous, for example, when
the developer has knowledge about the particular application
that is not available to the compiler. In addition, the inven-
tion is not limited to application to specific types of opera-
tions. More particularly, operation types other than shuffle
operations can be reduced similarly. Other reducible opera-
tions include, but are not limited to, floating point opera-
tions.

What is claimed is:

1. A method of compiling a software program for a
programmable processor having a functional unit associated
with at least two issue slots, the method comprising:

receiving a set of processor-executable operations com-

prising a first processor-executable operation of a type
typically associated with at least two issue slots and a
second processor-executable operation; and

replacing the first processor-executable operation with a

third equivalent processor-executable operation associ-
ated with fewer than all of the issue slots, thereby
allowing one or more of the rest of the issue slots to be
used by the second processor-executable instruction.

2. The method of claim 1, wherein replacing the first
processor-executable operation with a third equivalent
processor-executable operation further comprises analyzing
the first processor-executable operation and external infor-
mation to determine whether the first processor-executable

US 6,886,091 B1

9

operation can be replaced by the third equivalent processor-
executable operation.

3. The method of claim 1, wherein the third equivalent
processor-executable operation is associated with only one
issue slot.

4. The method of claim 1, wherein the third equivalent
processor-executable operation is associated with a plurality
of issue slots.

5. The method of claim 1, wherein replacing the first
processor-executable operation with a third equivalent
processor-executable operation further comprises:

determining a number of input registers and a number of

output registers that are used by the first processor-
executable operation; and

when the first processor-executable operation uses at most

two input registers and one output register, replacing
the first processor-executable operation with the third
equivalent processor-executable operation associated
with only one issue slot.

6. The method of claim 1, wherein the first processor-
executable operation is a shuftle operation.

7. The method of claim 1, wherein the first processor-
executable operation is a floating point operation.

8. A method of compiling a software program for a
programmable processor having a functional unit associated
with a plurality of issue slots, the method comprising:

receiving a processor-executable superoperation of a type

typically associated with at least two issue slots;
determining a number of input registers and a number of
output registers that are used by the superoperation; and
when the superoperation uses at most two input registers
and one output register, replacing the superoperation
with an equivalent processor-executable operation
associated with only one issue slot.

9. The method of claim 8, further comprising:

identifying any source operations that produce a result

affecting a result of the superoperation;

placing commands for the source operations in instruction

words;

selecting an earliest instruction word from a set of instruc-

tion words after the instruction words in which com-
mands for the source operations have already been
placed; and

determining whether an instruction word can be con-

structed that contains any commands already included
in the earliest instruction word in addition to a com-
mand for the superoperation.

10. The method of claim 9, further comprising:

when an instruction word that contains any commands

already included in the earliest instruction word in
addition to the command for the superoperation cannot
be constructed, selecting a subsequent instruction
word; and

determining whether an instruction word that contains any

commands already included in the earliest instruction
word in addition to the command for the superoperation
can be constructed using the subsequent instruction
word.

11. The method of claim 8, wherein the superoperation is
a shuftle operation.

12. The method of claim 8, wherein the superoperation is
a floating point operation.

13. A method of executing a first instruction that is
typically associated with at least two issue slot by a proces-
sor having a functional unit associated with a plurality of
issue slots, the method comprising:

10

determining whether the first instruction can be executed
using fewer than the at least two issue slots; and
when the first instruction can be executed using fewer
than the at least two issue slots, replacing the first
5 instruction with a second equivalent instruction asso-
ciated with fewer than the at least two issue slots
thereby allowing one or more of the rest of the issue
slots to be used by a third instruction.

14. The method of claim 13, wherein determining whether
the first instruction can be executed using fewer than the at
least two issue slots further comprises:

determining a number of input registers and a number of

output registers that are used by the first instruction;
and

when the first instruction uses at most two input registers

and one output register, replacing the first instruction
with the second instruction, the second instruction
being associated with a single issue slot.

15. The method of claim 13, wherein the second instruc-
tion is associated with two or more issue slots.

16. The method of claim 13, wherein the first instruction
is a shuffle operation.

17. The method of claim 13, wherein the first instruction
is a floating point operation.

18. A processor-readable medium containing processor-
executable instructions for:

receiving a set of operations comprising a first operation

of a type typically associated with at least two issue
slots of a functional unit of a programmable processor
and a second operation; and
replacing the first operation of the type typically associ-
ated with at least two issue slots by a third equivalent
operation associated with fewer than all of the issue
slots associated with the functional unit, thereby allow-
ing one or more of the rest of the issue slots to be used
by the second operation.
19. The processor-readable medium of claim 18, further
containing processor-executable instructions for analyzing
the first operation and external information to determine
whether the first operation can be replaced by the third
equivalent operation.
20. The processor-readable medium of claim 18, wherein
the third equivalent operation is associated with only one
issue slot.
21. The processor-readable medium of claim 18, further
containing processor-executable instructions for:
determining a number of input registers and a number of
output registers that are used by the first operation; and

when the first operation uses at most two input registers
and one output register, replacing the first operation
with the third equivalent operation associated with only
one issue slot.

22. The processor-readable medium of claim 18, wherein
the first operation is a shuffle operation.

23. The processor-readable medium of claim 18, wherein
the first operation is a floating point operation.

24. A processor-readable medium containing processor-
executable instructions for:

receiving a superoperation of a type typically associated

with at least two issue slots of a functional unit of a
programmable processor;
determining a number of input registers and a number of
output registers that are used by the superoperation; and

when the superoperation uses at most two input registers
and one output register, replacing the superoperation
with an equivalent operation associated with only one
issue slot.

15

35

60

65

US 6,886,091 B1

1

25. The processor-readable medium of claim 24, further
containing processor-executable instructions for:

identifying any source operations that produce a result
affecting a result of the superoperation;

placing commands for the source operations in instruction
words;

selecting an earliest instruction word from a set of instruc-
tion words after the instruction words in which com-
mands for the source operations have already been
placed; and

determining whether an instruction word can be con-
structed that contains any commands already included
in the earliest instruction word in addition to a com-
mand for the superoperation.
26. The processor-readable medium of claim 25, further
containing processor-executable instructions for:

when an instruction word that contains any commands
already included in the earliest instruction word in
addition to the command for the superoperation cannot
be constructed, selecting a subsequent instruction
word; and

determining whether an instruction word that contains any
commands already included in the earliest instruction
word in addition to the command for the superoperation
can be constructed using the subsequent instruction
word.
27. The processor-readable medium of claim 24, wherein
the superoperation is a shuffle operation.
28. The processor-readable medium of claim 24, wherein
the superoperation is a floating point operation.
29. A processor-readable medium containing processor-
executable instructions for:

w

10

15

20

25

30

12

determining whether a first instruction that is typically
associated with at least two issue slots in a functional
unit of a processor can be executed using fewer than the
at least two issue slots; and

when the first instruction can be executed using fewer

than the at least two issue slots, replacing the first
instruction with a second equivalent instruction that is
associated with fewer than the at least two issue slots
thereby allowing one or more of the rest of the issue
slots to be used by a third instruction.

30. The processor-readable medium of claim 29, further
containing processor-executable instructions for analyzing
the first instruction and external information to determine
whether the first instruction can be executed using fewer
than the at least two issue slots.

31. The processor-readable medium of claim 29, further
containing processor-executable instructions for:

determining a number of input registers and a number of

output registers that are used by the first instruction;
and

when the first instruction uses at most two input registers

and one output register, replacing the first instruction
with the second instruction, the second instruction
being associated with a single issue slot.

32. The processor-readable medium of claim 29, wherein
the second instruction is associated with two or more issue
slots.

33. The processor-readable medium of claim 29, wherein
the first instruction is a shuffle operation.

34. The processor-readable medium of claim 29, wherein
the first instruction is a floating point operation.

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

