
Journal of VLSI Signal Processing 39, 195–212, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

IEEE-Compliant IDCT on FPGA-Augmented TriMedia

MIHAI SIMA
Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055, Stn CSC,

Victoria, B.C. V8W 3P6, Canada

SORIN COŢOFANĂ
Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands

JOS T.J. VAN EIJNDHOVEN
Department of Information and Software Technologies, Philips Research Laboratories,

Professor Holstlaan 4, 5656 AA Eindhoven, The Netherlands

STAMATIS VASSILIADIS
Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands

KEES VISSERS
Electrical Engineering and Computer Sciences Department, University of California, 337 Cory Hall,

Berkeley, California 94720-1774, USA

Received October 9, 2003; Revised October 9, 2003; Accepted January 21, 2004

Abstract. This paper presents a TriMedia processor extended with an IDCT reconfigurable design, and assesses
the performance gain such an extension has when performing MPEG-2 decoding. We first propose the skeleton
of an extension of the TriMedia architecture, which consists of a Field-Programmable Gate Array (FPGA)-based
Reconfigurable Functional Unit (RFU), a Configuration Unit managing the reconfiguration of the RFU, and their
associated instructions. Then, we address the computation of the 8 × 8 (2-D) IDCT on such extended TriMedia and
propose a scheme to implement the 1-D IDCT operation on the RFU. When mapped on an ACEX EP1K100 FPGA
from Altera, the proposed 1-D IDCT exhibits a latency of 16 and a recovery of 2 TriMedia@200 MHz cycles, and
occupies 45% of the logic cells of the device. By configuring the 1-D IDCT on the RFU at application launch-time,
the IEEE-compliant 2-D IDCT can be computed with the throughput of 1/32 IDCT/cycle. This figure translates
to an improvement over the standard TriMedia of more than 40% in terms of computing time when 2-D IDCT is
carried out in the framework of MPEG-2 decoding. Finally, the proposed reconfigurable IDCT is compared to a
number of existing designs.

Keywords: configurable computing, VLIW processor, field-programmable gate array, inverse discrete cosine
transform



196 Sima et al.

1. Introduction

Inverse Discrete Cosine Transform (IDCT) constitutes
an important operation of MPEG-related standards and
has found wide applications in other fields (e.g., digital
filtering) as well. Traditionally, IDCT has been imple-
mented in hardware for Application-Specific Instruc-
tion Processors (ASIP), or in software in media-domain
processors. In this paper, we propose a reconfigurable
IDCT design for the 64-bit instance of TriMedia [1].
In order to assess the potential of the proposed design,
we consider the TriMedia processor extended with an
FPGA-based Reconfigurable Functional Unit (RFU).
Using such RFU, we implement an 1-D IDCT opera-
tion and establish the gains in performance when com-
puting a 2-D (8 × 8) IDCT.

Many algorithms have been proposed for efficient
calculation of the IDCT. An 8 × 8 IDCT coded with a
modified ‘Loeffler’ algorithm [2] can be scheduled in
the standard instruction set of TriMedia in 56 cycles [1].
Since the standard TriMedia provides good support for
transposition and matrix storage, we decided to provide
RFU-hardware support only for an 1-D IDCT opera-
tion. When mapped on an ACEX EP1K100 FPGA, the
1-D IDCT computing unit exhibits a latency of 16, a re-
covery of 2 TriMedia@200 MHz cycles, and occupies
45% of the logic cells of the device. By configuring the
1-D IDCT unit on the RFU at application launch-time,
the IEEE-compliant 2-D IDCT can be computed with
the throughput of 1/32 IDCT/cycle. This figure trans-
lates to an improvement over the standard TriMedia
of more than 40% in terms of computing time when
2-D IDCT is carried out in the framework of MPEG-2
decoding. Given the fact that the experimental TriMe-
dia is a 5 issue-slot VLIW processor with 64-bit data-
paths and a very rich multimedia-oriented instruction
set [1], such an improvement within its target media
processing domain [3] indicates that augmenting Tri-
Media with an FPGA shows clear benefit for doing
2-D IDCT.

The paper is organized as follows. For background
purpose, we briefly present the most important issues
related to IDCT theory and architecture of the recon-
figurable core in Section 2. Section 3 describes the pro-
posed architectural extension of TriMedia. The current
implementation of the 8 × 8 IDCT on standard TriMe-
dia, implementation issues of the 1-D IDCT comput-
ing resource on FPGA, the execution scenario of the
2-D IDCT on the extended architecture, as well as ex-
perimental results are presented in Section 4. Section 5

completes the paper with some conclusions and closing
remarks.

2. Background

In this section, we briefly present a theoretical back-
ground of IDCT. We also review the architecture of
the FPGA we used as an experimental reconfigurable
core.

Inverse Discrete Cosine Transform. The transfor-
mation for an N point 1-D IDCT is defined by [4]:

xi = 2

N

N−1∑

u=0

Ku Xu cos
(2i + 1)uπ

2N

where Xu are the inputs, xi are the outputs, and Ku =√
1/2 for u = 0, otherwise is 1. For MPEG, a 2-D IDCT

processes an 8 × 8 matrix X [5]:

xi, j = 1

4

7∑

u=0

7∑

v=0

Ku Kv Xu,v cos
(2i + 1)uπ

16

× cos
(2 j + 1)vπ

16

A standard strategy to compute the 2-D IDCT is
the row-column separation. The 2-D transform is per-
formed by applying the 1-D transform to each row
(horizontal IDCTs) and subsequently to each column
(vertical IDCTs) of the data matrix. This strategy can
be combined with different 1-D IDCT algorithms to
further reduce the computational complexity. One of
the most efficient 1-D IDCT algorithms has been pro-
posed by Loeffler [6]. It has to be mentioned that the
Loeffler algorithm has an intrinsic gain of 2

√
2; thus,

after the vertical and horizontal 1-D IDCTs have been
computed, a factor of 2

√
2 × 2

√
2 = 8 has to be

compensated out. This can be easily achieved by right-
shifting by three positions.

To fulfill the IEEE numerical accuracy requirements
for IDCT in MPEG applications [7], van Eijndhoven
and Sijstermans proposed a slightly different version
of the Loeffler algorithm in which the

√
2 factors are

moved around [2]. In our experiment, we will use this
modified algorithm (see Fig. 1), which has also an in-
trinsic gain of 2

√
2.

In the figure, the round block signifies a multipli-
cation by C ′

0 = √
1/2. The butterfly block and the

associated equations are presented in Fig. 2.



IEEE-Compliant IDCT on FPGA-Augmented TriMedia 197

Figure 1. The modified ‘Loeffler’ algorithm.

Figure 2. The butterfly—[6].

Figure 3. The rotator—[6].

A square block depicts a rotation which transforms
a pair [I0, I1] into [O0, O1]. The symbol of a rotator
and the associated equations are presented in Fig. 3.

Although an implementation of such a rotator with
three multiplications and three additions is possible
(Fig. 4(a) and (b)), we used the direct implementation
of the rotator with four multiplications and two addi-
tions (Fig. 4(c)), because it shortens critical path and
improves numerical accuracy. Indeed, there are three
operations (two additions and a multiplication) on the
critical path of the implementations with three mul-
tipliers, while the critical path of the implementation
with four multipliers contains only two operations (a
multiplication and an addition). Also, the initial addi-

Figure 4. Three possible implementations of the rotator.

tion involved by the three-multiplier implementations
may lead to an overflow when fixed-point arithmetic is
carried out.

The FPGA Architecture. Field-Programmable Gate
Arrays (FPGA) [8] are devices which can be config-
ured in the field by the end user. In a general view, an
FPGA is composed of two constituents: Raw Hardware
and Configuration Memory. The information stored
into the configuration memory defines the function
performed by the raw hardware. In this paper, we as-
sume that the architecture of the raw hardware is iden-
tical to that of an ACEX 1K device from Altera [9].
Both ACEX 1K and TriMedia families are of about
the same generation and manufactured in the same
TSMC technological process. This choice allows us
to make realistic assumptions regarding the perfor-
mance of FPGA-mapped logic versus a hypotethical
hardwired counterpart.

Briefly, an ACEX 1K device contains an array of
Logic Cells, each including a 4-input Look-Up Table
(LUT), a relative small number of Embedded Array
Blocks, each EAB being a RAM block with 8 inputs
and 16 outputs, and a rich interconnection network.
The logic capacity of the ACEX 1K family ranges from
576 logic cells for EP1K10 device to 4992 logic cells
for EP1K100 device. The absolute maximum rating
for the frequency of synchronous designs mapped on
these FPGAs is 180 MHz. More details regarding the
architecture and operating modes of ACEX 1K devices,
as well as data sheet parameters can be found in [9].

The next section will introduce the architectural ex-
tension for the experimental 64-bit TriMedia instance,
which is also referred to as TriMedia–CPU64.

3. TriMedia Architectural Extension

TriMedia–CPU64 is a processor model, whose archi-
tecture features a rich instruction set optimized for



198 Sima et al.

Figure 5. TriMedia–CPU64 organization—[1].

media processing. Specifically, it is a 5 issue-slot VLIW
engine, launching a long instruction every clock cycle
[1]. It has a uniform 64-bit wordsize through all func-
tional units, the register file, load/store units, internal
and external buses. Each of the five operations in a
single instruction can in principle read in two regis-
ter arguments and write back one register result. In
addition, each operation can be guarded with the least-
significant bit of a fourth register to allow for condi-
tional execution without branch penalty. With the ex-
ception of floating point divide and square root unit,
all functional units have a recovery of 1, while their la-
tency ranges from 1 to 4 (latency is the number of clock
cycles between the issue of an operation and avail-
ability of its results, while recovery is defined as the
minimum number of clock cycles between the issue of
successive operations). The TriMedia core is assumed
to support multiple-slot operations, or super-operations
[10]. Such a super-operation occupies two or more ad-
jacent slots in the VLIW instruction, and maps to a
wider functional unit. This way, operations with more
than two arguments and one result are possible. The
architecture also supports subword (SIMD-style) par-
allelism on byte, half-word, or word entities. The cur-
rent organization of the TriMedia-CPU64 is presented
in Fig. 5.

Figure 6. The architectural extension of TriMedia–CPU64 VLIW core.

In this paper, we propose to augment the TriMedia–
CPU64 processor with a Reconfigurable Functional
Unit (RFU) consisting of an FPGA core and its as-
sociated Controller, and a Configuration Unit (CU)
managing the reconfiguration of the FPGA. Both the
RFU and CU are embedded into TriMedia as any other
hardwired functional units, i.e., they receive instruc-
tions from the instruction decoder, read their input
arguments from and write the computed values back
to the register file, as depicted in Fig. 6. In this way,
only minimal modifications of the basic architecture,
and also of the associated compiler and scheduler are
required.

In order to use the RFU based on the MOLEN ar-
chitectural and programming model [11], the user is
provided a kernel of new instructions: SET, and EXE-
CUTE. This kernel constitutes the extension of the Tri-
Media instruction set architecture we propose. Loading
configuration information into the FPGA configuration
memory is performed by the Configuration Unit under
the command of a SET instruction, while the EXECUTE
instruction launches the operation performed by the
FPGA-mapped computing unit [12]. With these new
instructions, the user is given the freedom to define
and use any computing unit subject to the FPGA size
and TriMedia organization.

Uploading configuration information to the CU is
performed under the command of a double-slot instruc-
tion issued on Slot pair 1 + 2:

SET Rs1, Rs2, Rs3 → Rd

where the registers Rs1, Rs2, and Rs3 contain 192
bits of configuration information. If the instruction
completes successfully, then the register Rd con-
tains 0, otherwise it contains an error code. For the
ACEX 1K family, which in fact we assume in our sub-
sequent experiment, the average latency for loading
new FPGA configuration information from off-chip



IEEE-Compliant IDCT on FPGA-Augmented TriMedia 199

is about 50 ns/byte, that is 10 cycles/byte. Since the
SET instruction places 192 bits = 24 bytes on the
CU at a time, it has a latency of 240 cycles. For an
EP1K100 device, which has a configuration file of
1,337,000 bit [9], 6,964 SET instructions or 6,964 ×
240 = 1,671,360 cycles are needed to reconfigure the
array.

Conceptually speaking, computing units of user-
definable computing pattern,1 latency, recovery, and
slot-assignment2 can be configured on RFU. Thus, the
RFU can act as five independent single-slot functional
units each of them executing a different custom op-
eration, a mixture of single- and multiple-slot func-
tional units, or even a five-slot functional unit. In all
these situations, the RFU may receive EXECUTE in-
structions issued on any of the five TriMedia slots, and
use all 10 read and 5 write ports of the register file per
call.

In connection to the FPGA-augmented TriMedia im-
plementation, we would like to note that the flexi-
bility in defining slot-width and slot-assignments for
RFU-mapped operations determines the implementa-
tion cost. For example, assuming the maximum free-
dom degree in defining slot-assignments for RFU op-
erations, a separate RFU controller has to be placed
on each issue slot. Moreover, the TriMedia instruc-
tion decoder has to be able to decode EXECUTE in-
structions on each of the five issue slots. In addition,
we also note that although the maximum flexibility in
defining RFU-based operations may be of theoretical
value, it is not of practical relevance in the context of
our current investigations. As one can notice in the
next sections, the RFU-mapped IDCT is a double-slot
operation.

For this reason, in this paper we consider only a
particular instance of FPGA-augmented TriMedia, in
which only a single-slot instruction on Slot 1 and a
double-slot instruction on Slot pair 1 + 2 can be issued
to the RFU. Our choice does not require additional
development efforts. Since only single- and double-
slot operations are currently supported by the compiler
and scheduler for the time being, there is no need to
modify the TriMedia toolchain.

For each of the single-slot, and double-slot RFU
instructions, a separate operation code is allocated:
EXECUTE 1, and EXECUTE 2, respectively. In both
cases, the standard TriMedia–CPU64 instruction for-
mat is preserved: the opcode is a 9-bit field, and each
and every source or destination registers is specified by
a 7-bit field. Up to two inputs and one output, and four

inputs and two outputs can be specified by the single-,
and double-slot instructions, respectively:

EXECUTE 1 Rs1, Rs2 → Rd1

EXECUTE 2 Rs1, Rs2, Rs3, Rs4 → Rd1, Rd2

The EXECUTE instructions are generic, since their
semantics can be redefined. By reconfiguring the raw
hardware, followed by issuing an EXECUTE instruction,
any new user-defined operation subject to FPGA size
and TriMedia organization can be launched into exe-
cution, while only a single entry in the opcode space is
needed to encode the EXECUTE instruction. Since all the
fields in the EXECUTE 1 instruction format but the op-
code field encode the input and output registers, there
are no provisions for additional encoding. Thus, only a
single operation per RFU configuration can be encoded
within EXECUTE 1. That is, if a different single-slot op-
eration is to be launched, then a reconfiguration of the
raw hardware must be carried out beforehand. How-
ever, as we describe subsequently, more operations per
RFU configuration can be encoded within a multiple-
slot EXECUTE instruction. This may reduce the number
of reconfigurations when a large FPGA is available.

In the standard TriMedia–CPU64, only one of the
opcode fields in a multiple-slot instruction defines the
operation, all the others being set NOPs (Table 1). By us-
ing these unused fields as an argument for the RFU OP-
CODE (Table 2), a large number of RFU operations can
be encoded per configuration, while only a single entry
for the EXECUTE instruction needs to be allocated in the
opcode space. Assuming a double-slot operation, for
example, the 9-bit additional opcode (which is subse-
quently referred to as an RFU-OP-IDENTIFIER or sim-
ple RFU-OP-ID) can specify 512 different operations.

We would like to mention that the two parts of the
double-slot operation are decoded separately, and only
when the first part specifies an EXECUTE 2 opcode,

Table 1. The VLIW double-slot operation instruction format.

Slot 1 Slot 2 3, 4, 5

OPCODE src. & dest. NOP src. & dest. ...

Table 2. The RFU double-slot instruction format.

Slot 1 Slot 2 3, 4, 5

RFU OPCODE src. & dest. RFU-OP ID src. & dest. ...



200 Sima et al.

the second opcode is interpreted as an RFU-OP-
IDENTIFIER, and thus decoded locally at the RFU by
the RFU controller. This way, an RFU super-operation
does not create pressure on the instruction decoder,
neatly fits in the existing instruction format, fits the
existing connectivity structure to the register file, and
hence requires very little hardware overhead.

In connection to the EXECUTE instructions, we would
like to emphasize that in addition to semantics, their
number of operands, latency, and recovery are user-
definable, too (the slot-width is defined implicitly by
the particularEXECUTE 1orEXECUTE 2opcode). Thus,
it is the responsibility of the programmer to augment the
Machine Description File with appropriate information
[13]. At the machine implementation level, these pa-
rameters are set by means of Selectors, which become
part of the RFU configuration, as presented in Fig. 6. A
different {number of operands, latency, recovery} set
can be defined for each RFU-OP-ID. With such mecha-
nism, an EXECUTE instruction is trully generic, and the
programmer is able to adjust its behavior as needed.

In a similar way, the user can define as many RFU-
related instructions as he/she wants. In the subsequent
experiment, we will define a single RFU-related opera-
tion which computes an 1-D IDCT on eight points. We
will present implementation issues of the 1-D IDCT
computing facility on the FPGA, and will evaluate the
performance when computing an 8 × 8 IDCT.

4. Experimental Results

In order to determine the potential impact on per-
formance provided by the reconfigurable core, the
1-D IDCT is configured on the RFU at application
launch-time. That is, the SET instructions are sched-
uled on the top of the program. As mentioned, we use
an ACEX 1K FPGA from Altera as experimental plat-
form for the reconfigurable core.

In the 2-D IDCT implementation on standard 5-issue
slot TriMedia, all computations are done with 16-bit
values, and make intense use of four-way SIMD-style
operations. The 8 × 8 matrix is stored in sixteen 64-bit
words, each containing a half row of four 16-bit el-
ements. Therefore, four 16-bit elements can be pro-
cessed in parallel by a single word-wide operation.
Next to that, since the host is a 5-issue slot VLIW pro-
cessor, five such operations can be executed per clock
cycle.

To calculate the 2-D IDCT, eight 1-D IDCTs are
first computed using the modified ‘Loeffler’ algorithm

[2]. By using the four-way SIMD operations, four
IDCTs are effectively computed concurrently. That is,
the eight 1-D IDCTs are calculated as two four-way
SIMD 1-D IDCTs. Then, the transpose of the 8 × 8
matrix is performed by a transpose unit which covers a
double issue slot. A TRANSPOSE double-slot operation
can generate either the top or bottom transpose half
of a transposed 4 × 4 matrix in one cycle. Therefore,
the transpose of an 8 × 8 matrix is computed in eight
basic operations. Finally, eight 1-D IDCTs (two SIMD
1-D IDCTs) are computed with the results generated by
the transposition. Following the described procedure,
a complete 2-D IDCT including the load and store op-
erations can be performed in 56 cycles [1].

Since the standard TriMedia provides a good support
for transposition and matrix storage, we expect to get
little benefit if we configure the entire 2-D IDCT into
FPGA. Our goal is to balance the cost of storing the
intermediate 2-D IDCT results into an FPGA-resident
transpose matrix memory against issue-slot occupancy.
Consequently, in our implementation on the extended
TriMedia, we configure only an 1-D IDCT double-
slot computing resource on the RFU. By launching an
1-D IDCT double-slot operation having two 64-bit in-
puts and two 64-bit outputs, an 1-D IDCT is computed
on eight 16-bit values. To calculate the 2-D IDCT, eight
1-D IDCT are firstly computed. Then a transpose is
performed on the 8×8 data matrix using TriMedia na-
tive TRANSPOSE double-slot operations. Finally, eight
1-D IDCT are again computed. This execution scenario
is presented in Fig. 7.

Let us assume that a horizontal packing of the data
is needed at the output of the 8 × 8 IDCT, i.e., four
elements in the same matrix line are to be stored into a
(64-bit) double word. If the input data is also horizon-
tally packed, then two transposition stages are needed
(Fig. 8—left), otherwise, only the middle transposi-
tion stage is required (Fig. 8—right). In connection to
the MPEG decoding task [5], we notice that the front
transposition stage can be bypassed if the appropriate
zig-zag scan ordering or its transposed version is used

Figure 7. The computing scenario of 8 × 8 IDCT on the extended
TriMedia.



IEEE-Compliant IDCT on FPGA-Augmented TriMedia 201

Figure 8. Bypassing the first transposition stage.

for 8 × 8 matrix reconstruction. Consequently, the per-
formance evaluation of the 8 × 8 IDCT takes into
consideration only eight 1-D IDCTs, a transposition
stage, and again eight 1-D IDCTs.

A pipelined FPGA implementation of 1-D IDCT
having a recovery of 1 implies that the FPGA clock
frequency is equal with the TriMedia clock frequency.
Nowadays, the upper limit of the clock frequency in
TriMedia family is around 300 MHz, while the maxi-
mum clock frequency for ACEX 1K FPGA family is
180 MHz. Therefore, an 1-D IDCT hypothetical im-
plementation having a recovery of 1 is not a realistic
scenario, and a recovery of 2 or more is mandatory for
the time being. In the sequel, we will assume a recovery
of 2 for 1-D IDCT, which translates into an FPGA cycle
time to TriMedia cycle time ratio of 2. Our assumption
does not violate the general accepted performance ratio
of FPGA-mapped logic versus hardwired logic—see
for example [14]. Considering a TriMedia running at
200 MHz, the pipelined implementation of 1-D IDCT
will work with a clock frequency of 100 MHz.

Implementation Issues of the 1-D IDCT. All the
operations required to compute 1-D IDCT are imple-
mented using 16-bit fixed-point arithmetic. Referring
again to Section 2, and to Figs. 1, 3, and 4, since the
computation of 1-D IDCT requires 14 multiplications,
an efficient implementation of each multiplication is

of crucial importance. For all multiplications, the mul-
tiplicand is a 16-bit signed number represented in 2’s
complement notation, while the multiplier is a positive
constant of 15 bits or less. As proved in [15], these
word lengths in connection with fixed-point arithmetic
and proper rounding are sufficient to fulfill the IEEE
numerical accuracy requirements for IDCT in MPEG
applications.

A general multiplication scheme for which both mul-
tiplicand and multiplier are unknown at the imple-
mentation time exhibits the largest flexibility at the
expenses of higher latency and larger area. If one of
the operands is known at the implementation time, the
flexibility of the general scheme becomes redundant,
and a customized implementation of the scheme will
lead to improved latency and area. A scheme which
is optimized against one of the operands is referred
to as multiplication-by-constant. Since such a scheme
is more appropriate for our application, we will use it
subsequently.

To implement the multiplication-by-constant
scheme, we built a partial product matrix, where only
the rows corresponding to a ‘1’ in the multiplier are
filled in. Then, reduction schemes which fit into a
pipeline stage running at 100 MHz are sought. It
should be emphasized that a reduction algorithm
which is optimum on an FPGA family may not be
appropriate for a different family.

In Table 3 we present the performances of sev-
eral reduction modules for ACEX 1K. All the exper-
iments correspond to synchronous designs, i.e., both
inputs and outputs are registered. The figures have
been obtained by compiling VHDL source code with
Leonardo SpectrumTM from Exemplar, followed by
placement and routing with MAX+PLUS IITM from
Altera. Since a reliable broadcast of the clock signal
on an ACEX 1K chip is not guaranteed for a frequency
above 180 MHz [9], we will proceed to a conservative
approach and consider the italics-typed figures as be-
ing too optimistic, although they have been generated
by software tools. Consequently, we will operate such
“high-frequency” reduction modules at 180 MHz or be-
low. The following settings of the software tools have
been used: (1) Leonardo-SpectrumTM: Lock LCELLs:
NO, Map Cascades: YES, Extended Optimization Ef-
fort, Optimize for Delay, Hierarchy: Flatten, Add I/O
Pads: NO; (2) MaxPlus-II: WYSIWYG, Optimize = 10
(Speed); (3) MaxPlus-II: FAST, Optimize = 10 (Speed).

In order to implement an IDCT at 100 MHz,
reduction modules which can run at 100 MHz or



202 Sima et al.

Table 3. Performances of several reduction modules for ACEX 1 K Speed Grade-1.

Performance fmax (MHz)

Leonardo- MaxPlus-II MaxPlus-II
Reduction module Spectrum (1) WYSIWYG (2) FAST (3)

Two-operand 16-bit adder 136 140 140

Three-operand 104 107 117

Four-operand 104 103 109

Five-operand 84 81 81

Six-operand 84 76 76

Two-operand 24-bit adder 112 114 114

Three-operand 89 94 94

Four-operand 89 86 90

Two-operand 28-bit adder 102 103 103

Three-operand 83 85 83

Four-operand 83 77 81

Two-operand 30-bit adder 98 102 102

Three-operand 88 93 91

Five-operand 3-bit adder 108 147 138

Six-operand 108 131 121

Seven-operand 108 128 116

Five-operand 4-bit adder 105 126 113

Six-operand 105 126 107

Seven-operand 105 111 114

Five-operand 6-bit adder 101 113 107

Six-operand 101 97 105

Seven-operand 101 94 97

Three inputs Dadda population counter 231 250 250

Four inputs 228 250 250

Five inputs 155 175 169

Six inputs 155 188 188

more should be considered. Subsequently, we present
the reduction steps for all multiplications. In order
to implement 16-bit fixed-point arithmetic, both the
multiplicand and multiplier have been properly scaled
so that values remain representable with 16 bits and
15 bits, respectively, while preserving the highest
possible precision [15]. Also, only the most significant
16 bits of the extended 31-bit product are to be stored.
It is worth mentioning that only 30 out of 31 bits
of the product have to be computed. As depicted in
Fig. 9(a), the 31st (most significant) bit (labeled ‘30’)
is derived from the sign-bit of the multiplicand, ‘S’,
while the carry from position ‘29’ to ‘30’ is discarded.

Figure 9. Sign-extension for: (a) 15-bit multiplier; and (b) 13-bit
multiplier.



IEEE-Compliant IDCT on FPGA-Augmented TriMedia 203

Recursively, assuming that the multiplier magnitude is
small enough so that the multiplier can be represented
with only n bits, where 15 ≥ n ≥ 1, then only 15 + n
out of 31 bits of the extended product have to be com-
puted. The most significant 15−n+1 bits of the product
are derived from the sign-bit of the multiplicand, while
the carry from position 15 + n − 1 to position 15 + n
is discarded. Fig. 9(b) presents an example for n = 13.

In addition to the solution we described in
[16], we implemented a Rounding-To-Nearest (rtn)
scheme [17] at the end of each multiplica-
tion. Assuming that the extended 31-bit prod-
uct is p15, . . . , p1, p0, p−1, p−2, . . . , p−15, where
p−1, p−2, . . . , p−15 are the bits to be discarded, the
rounding-to-nearest is performed by adding the bit p−1

to the 16-bit (p15, . . . , p1, p0) unrounded product, as
it is depicted in Fig. 10 (‘S’ represents the sign-bit, and
‘R’ specifies the rounding-bit). The generated rounding
function is depicted in Fig. 11, where x is the value to be
rounded, while rtn(x) is the rounded value nearest to x .

In connection to the rounding stage, several com-
ments are worth to be provided. First, in order to
obtain (16-bit) zero when rounding the (31-bit) highest
negative numbers in the range 7fff 8000 . . . 7fff
ffff, carry propagation over all 16 bits of the
rounded product is needed. That is, the sign bit has
to be involved in computation during the rounding
stage. This imposes a significant overhead as the
final rounding is always on the critical path of the
multiplication. Second, we remind that the 16-bit
fixed-point arithmetic and rounding-to-nearest is
sufficient to fulfill the IEEE numerical accuracy

Figure 10. Rounding-To-Nearest implementation.

Figure 11. Rounding of a 2’s-complement value to the nearest
number.

requirements for IDCT in MPEG applications. This
was really confirmed by performing the IEEE accu-
racy validation [15]. This means that when rounding
the (31-bit) highest positive numbers in the range
3fff 8000 . . . 3fff ffff, an overflow is never
encountered. For this reason, saturating arithmetic is
not needed and, therefore, has not been implemented.
Finally, following the procedure described in [17], we
estimate that the normalized magnitude of the upward
bias introduced by the rounding-to-nearest scheme is:

bias = 0.5

215−atzlsb

where atzlsb (all-time zero least significant bits) is the
number of least significant p−1, p−2, . . . , p−15 bits of
the product which are zero all the time. The worst case
is encountered for multiplication by S′

1, where atzlsb =
3 (as we show later on). Therefore,

bias = 0.5

212
= 0.5

4096
= 0.00012207

which means that 4096 × 2 = 8192 rounding steps
are needed to affect the precision of the 16-bit rounded
product by only 1 bit. Fortunately, the number of the
operations including a rounding step that are needed to
reconstruct a pixel (both 2-D IDCT and motion com-
pensation are considered) is far less that 8196 (is of the
order of 20 or so). Consequently, the bias introduced
by the rounding-to-nearest scheme does not affect the
result and, therefore, is out of concern.

The partial product matrix and the selected reduc-
tion modules and steps for multiplication by the con-
stant C ′

0 = 5a82 h are presented in Fig. 12 (the Roman
numerals indicate the reduction steps). First, the partial
product matrix is built. Then, reductions on the mod-
ules specified by the shaded areas are carried out. The

Figure 12. The partial product matrix and the selected reduction
steps for multiplication by the constant C ′

0.



204 Sima et al.

Figure 13. The partial product matrix and the selected reduction
steps for multiplication by the constant C ′

1.

first stage generates four binary numbers of different
lengths result, which are reduced to one row in the sec-
ond stage. Therefore, a multiplication by the constant
C ′

0 including rounding is performed in two pipeline
stages.

The partial product matrix and the selected reduction
modules and steps for multiplication by the constant
C ′

1 = 58c5 h are presented in Fig. 13. The reduction
is performed in a horizontal way, two lines at a stage.
Therefore, a multiplication by the constant C ′

1 is per-
formed in three stages. The multiplication by the con-
stant C ′

1 proved too difficult to be implemented in two
stages only.

The partial product matrix and the selected reduction
modules and steps for multiplication by the constants
S′

1 = 11a8 h, C ′
3 = 4b42 h, S′

3 = 3249 h, C ′
6 = 22a3 h,

and S′
6 = 539f h are presented in Figs. 14–18, respec-

tively. Concerning the multiplication by constant S′
6,

some comments are worth to be provided. In order
to reduce the number of ‘1’ in the multiplier S′

6 and,

Figure 14. The partial product matrix and the selected reduction
steps for multiplication by the constant S′

1.

Figure 15. The partial product matrix and the selected reduction
steps for multiplication by the constant C ′

3.

Figure 16. The partial product matrix and the selected reduction
steps for multiplication by the constant S′

3.

Figure 17. The partial product matrix and the selected reduction
steps for multiplication by the constant C ′

6.

consequently, the number of rows in the correspond-
ing partial product matrix, the Booth’s recoding [17]
has been applied. That is, the multiplier S′

6 is rewritten
as S′

6 = 5420 h − 0081 h, and the rows in the partial
product matrix corresponding to 0081 h are subtracted
rather than added.



IEEE-Compliant IDCT on FPGA-Augmented TriMedia 205

Figure 18. The partial product matrix and the selected reduction
steps for multiplication by the constant S′

6.

We would like to note that the critical path of the
1-D IDCT is located on the bottom half of the modified
‘Loeffler’ algorithm (Fig. 1). Once the multiplication
by constant C ′

1 is performed in three stages, there is no
gain in performance to implement the other three mul-
tiplications by constants S′

1, C ′
3, S′

3 in less than three
stages. Therefore, the multiplications by the constants
S′

1, C ′
3, S′

3 are implemented in three stages also, even
though they may allow for an efficient (timing) imple-
mentation in two stages, too. The same timing-relaxed
implementation strategy is used for multiplications by
the constants C ′

6 and S′
6, since they both are not located

on the critical path.
The sketch of the 1-D IDCT pipeline is depicted

in Fig. 19 (the Roman numerals specify the pipeline
stages). Considering the critical path, the latency of the
1-D IDCT is composed of:

– one TriMedia cycle for reading the input operands
from the register file into the input flip-flops of the
1-D IDCT computing resource;

– two FPGA cycles for computing the multiplication
by constant C ′

0;

Figure 19. The 1-D IDCT pipeline.

– one FPGA cycle for computing all the additions for
the butterflies between the multipliers by the con-
stant C ′

0 and the rotators
√

2C1 and
√

2C3.
– three FPGA cycles for computing the multiplication

by the constant C ′
1;

– one FPGA cycle for computing all the additions re-
quired by the rotators

√
2C1 and

√
2C3, and the final

butterflies;
– one TriMedia cycle for writing back the results from

the output flip-flops of the 1-D IDCT computing re-
source into the register file.

Therefore, the latency of the 8-point 1-D IDCT
operation is 1+ (2+1+3+1)×2+1 = 16 TriMedia
cycles. We determined that 1-D IDCT uses 45% of the
logic elements and 257 I/O pins of an ACEX EP1K100
device.

2-D IDCT on Extended TriMedia. As mentioned, an
1-D IDCT with a latency of 16 and a recovery of 2 is
configured on the RFU at application launch-time. We
assigned the IDCT operation to the slot pair 1 + 2. After
eight 1-D IDCTs, eight TRANSPOSE super-operations
are scheduled on the slot pairs 1 + 2 or 3 + 4 to com-
pute the transpose of the 8 × 8 matrix. Then, eight
1-D IDCTs complete the 2-D IDCT. Before and after
each 2-D IDCT, LOAD and STORE operations fetch the
input operands from main memory into register file,
and store the results back into memory, respectively.
The scheduled code and the performance figures are
presented in Fig. 20.

In order to keep the pipeline full, back-to-back 1-D
IDCT operation is needed. That is, a new 1-D IDCT in-
struction has to be issued every two cycles. Since true
dependencies forbid issuing the last eight 1-D IDCTs
of a 2-D IDCT to fulfill back-to-back requirement, the
2-D IDCTs are processed in chunks of two, in an inter-
leaved fashion. A number of 2 × 16 = 32 registers are



206 Sima et al.

Figure 20. Schedule result for a 1-D IDCT having the latency of 16 and recovery of 2 (LD stands for LOAD, RD for read, WR for write, ST for
STORE, and T for TRANSPOSE).

needed for this processing pattern. This 2-D IDCT im-
plementation exhibits a throughput of 1/32 IDCT/cycle
and a latency of 84 cycles for two IDCTs (that is,
an average of 42 cycles/IDCT). It is worth mention-
ing that the machine is well balanced, none of the
5-slot VLIW instructions being fully occupied with
operations:

– Two LOAD or two STORE operations are issued every
other clock cycle on slots 4 and 5; thus the slots 4
and 5 are only 50% occupied.

– IDCT super-operations are issued on slots 1+2 every
other clock cycle, which translates to a 50% usage
of the slots 1 and 2.

– The transpose super-operations are also issued on
every other clock cycle, and the issuing slots can be
either 1 + 2 or 3 + 4. Since there are only eight
transpositions per 2-D IDCT, the overall slot oc-
cupancy percentage does not increase significantly
above 50%.

In this way, there are plenty of free slots which can be
utilized for other purposes, e.g., for implementing the
post-IDCT rounding and saturation required by MPEG
standard [5], or even a 2-D IDCT in the standard in-
struction set. Consequently, the announced figures rep-
resent the lower bound of the performance improve-
ment which can be achieved on extended TriMedia.

In connection to the scheduled code presented in
Fig. 20, we would like to mention that cycling over In-
structions 1 ÷ 84 is needed to launch the computation
of the next two 2-D IDCTs. The immediate effect is that

there is an overhead associated to firing-up and flush-
ing the reconfigurable-hardware (1-D IDCT) pipeline.
Thus, the throughput of 1/32 IDCT/cycle corresponds
to the ideal scenario of a loop which is unrolled an
infinite number of times.

In order to have a realistic scenario, two techniques
can be employed: (1) finite loop unrolling, and (2) soft-
ware pipelining. Both techniques will be analysed sub-
sequently and performance figures will be provided.
Concerning the second technique, we have to mention
that, for the time being, the TriMedia scheduler uses
the decision tree as a scheduling unit [18]. Thus, all
operations return the results in the same decision tree
that they are launched, even though the TriMedia archi-
tecture does not forbid the contrary. This is the major
limiting factor in generating deep software pipelined
loops containing long-latency operations. However, the
code containing RFU operations is very simple; thus,
programming in assembly is indeed a feasible solution
despite of the fact that the host is a complex VLIW
processor.

In Fig. 20, we also present the edges of the soft-
ware pipeline loop (Instructions 4 and 67), as well as
the corresponding JUMP operation which cycles over
the loop. To employ loop pipelining, the first 4 LOAD
operations and the last 16 STORE operations should
be folded into the loop. Thus, the overhead associ-
ated to firing-up and flushing the software pipeline
(i.e., the prologue and the epilogue) consists of these
4 LOAD, and 16 STORE operations, respectively, issued
in pairs every other cycle. Thus, the total overhead is
20 cycles.



IEEE-Compliant IDCT on FPGA-Augmented TriMedia 207

Table 4. MPEG-2 statistics for several
conformance bit-strings.

Coded blocks/slice
(average number)

Frame typeScene
(MPEG-conformant
bit-string) I P B

bat 327 334 – 257 234

popplen 264 80 38

sarnoff2 270 171 61

tennis 264 167 71

ti1cheer 264 155 88

In order to assess the implications of the loop pro-
logue and epilogue in a real case, we have focused
on the average number of coded blocks per slice for a
number of MPEG-conformance bit-strings (Table 4).
If all the blocks in an MPEG slice are first recon-
structed and only then transformed as a single batch,
then the lowest average batch size is 38 blocks/slice
(B frames in the popplen scene). This figure trans-
lates in an average penality associated to the prologue
and epilogue of the software pipeline loop of 20/38 ≈
0.54 cycles/block. Since this overhead represents less
than 2% of the 32 cycle/block throughput, it can be
neglected.

In Table 5, we present performance figures for two
loop organizations (linear and software pipelined), sev-
eral computing scenarios (FPGA-based 2-D IDCTs are
processed in chunks of two, FPGA-based 2-D IDCTs
are blended with a single 2-D IDCT computed in soft-
ware, vertical 1-D IDCTs and transpositions are com-
puted first for all matrices of the testbench, and only
then all horizontal 1-D IDCTs are carried out), and sev-
eral degrees of loop unrolling. Since the IDCT round-
ing and saturation as specified by MPEG standard [5]
may be subject to optimization at a complete MPEG
decoder level, we will also present the experimental fig-
ures for three cases: IDCT rounding and saturation is
performed in FPGA as an additional (the eighth) hard-
ware pipeline stage, in software in the standard TriMe-
dia instruction set, or postponed for a subsequent stage
of MPEG decoding process. We mention that when
the IDCT rounding and saturation is carried out imme-
diately after the 2-D IDCT completed, the square of
the intrinsic Loeffler gain is also compensated out by
right-shifting by three positions (i.e., integer division
by 8).

As expected, the best result is obtained for a software
pipeline loop: 1/32 IDCT/cycle. However, a linear loop
organization with two FPGA-based IDCTs and 2× un-
rolling is not a bad choice either, since it achieves a
throughput only 17% lower: 1/37.3 IDCT/cycle. Since
generating software pipeline loops is not supported by
the current TriMedia toolchain, the advantage of the
later approach is an easier programming task. If IDCT
rounding and saturation can be postponed for a different
stage of MPEG decoding process, the best solution for
a linear loop corresponds to a computing scenario with
four FPGA-based and one software-based IDCTs in the
loop. The throughput in this case is 1/35.6 IDCT/cycle.
For the same linear loop organization and a computing
scenario in which the vertical 1-D IDCTs are computed
for all the matrices of the testbench in a first loop, and
only then all the horizontal 1-D IDCTs are carried out
in a separate loop, the double overhead associated to
the prologues and epilogues of the two loops decreases
the throughput to 1/42.8 IDCT/cycle (about 6% lower).
Unrolling the loop three or more times generates reg-
ister spilling; thus the performance degrades signifi-
cantly.

It is worth noting that IDCT rounding and saturation
carried out in software requires about 1.5 cycles/IDCT,
and only 0.5 ÷ 1.0 cycles/IDCT when carried out
in FPGA. However, two RFU-OP-IDs are needed to
embed IDCT rounding and saturation in FPGA: one
ID for horizontal 1-D IDCT, and one ID for vertical
1-D IDCT. At this moment we would like to empha-
size that due to the MOLEN concept which provides
means to specify multiple RFU-based operations for
the same RFU-OP, the need for two or more IDs never
becomes a limitation.

In Table 6 and Fig. 21 we compare the performances
of several 2-D IDCT implementations: on standard Tri-
Media [1], on FPGA-augmented TriMedia, on FPGA
alone [19], and on several 2-D convolution-oriented
coarse-grain programmable architectures: REMARC
[20], MorphoSys [21], M.F.A.S.T. [23], and ManAr-
ray [22]. Since the IDCT is applied on large batches
of 8 × 8 blocks, the throughput is more important than
latency. For this reason, our performance analysis is fo-
cused on the 2-D IDCT throughput. A special remark
regarding the distributed arithmetic-based implemen-
tation on FPGA alone has to be made. Since the mul-
tiplications are computed by looking-up into on-chip
small memories (the so called Block SelectRAM cells)
[19], the pipeline cannot be made deeper, and 55.6 MHz
is the upper bound of the frequency that can be achieved



208 Sima et al.

Table 5. Performance figures for 8 × 8 IDCT on (FPGA-augmented) TriMedia.

Performance
Loop Unrolling IDCT rounding Effectiveness (cycles/
organization Computing scenario degree and saturation (issues/cycle) 8 × 8 matrix) Comments

Linear Two FPGA-IDCTs None None 1.94 41.5

Linear Two FPGA-IDCTs None In FPGA 1.87 43.0 Requires two
RFU-OP-IDs

Linear Two FPGA-IDCTs None In SW 1.87 44.4

Linear Two FPGA-IDCTs 2× None 2.18 36.8

Linear Two FPGA-IDCTs 2× In FPGA 2.15 37.3 Requires two
RFU-OP-IDs

Linear Two FPGA-IDCTs 2× In SW 3.76 38.5

Linear Two FPGA-IDCTs 3× None 2.30 61.6 Spilling
encountered

Linear Two FPGA-IDCTs 3× In FPGA 2.11 63.1 Spilling
encountered

Requires two
RFU-OP-IDs

Linear Two FPGA-IDCTs 3× In SW 3.22 64.0 Spilling
encountered

Linear Four FPGA-IDCTs + one SW-IDCT None None 3.10 35.6

Linear Four FPGA-IDCTs + one SW-IDCT None In FPGA/SW 3.24 38.2 Requires two
RFU-OP-IDs

Linear 16 Vertical 1-D IDCTs + Transposition None n/a 2.30 28.0

16 Horizontal 1-D IDCTs None None 1.90 25.5

Total for 2-D IDCT – – – 53.5

Linear 16 Vertical 1-D IDCTs + Transposition None n/a 2.30 28.0 Requires two
RFU-OP-IDs

16 Horizontal 1-D IDCTs None In FPGA 1.83 26.5

Total for 2-D IDCT – – – 54.5

Linear 16 Vertical 1-D IDCTs + Transposition 2× n/a 2.92 22.0

16 Horizontal 1-D IDCTs 2× None 2.33 20.8

Total for 2-D IDCT – – – 42.8

Linear 16 Vertical 1-D IDCTs + Transposition 2× n/a 2.92 22.0 Requires two
RFU-OP-IDs

16 Horizontal 1-D IDCTs 2× In FPGA 2.27 21.3

Total for 2-D IDCT – – – 43.3

Linear 16 Vertical 1-D IDCTs + Transposition 3× n/a 2.79 37.2 Spilling
encountered

16 Horizontal 1-D IDCTs 3× None 2.03 35.5 Requires two
RFU-OP-IDs

Total for 2-D IDCT – – – 72.7

(Continued on next page.)



IEEE-Compliant IDCT on FPGA-Augmented TriMedia 209

Table 5. (Continued).

Performance
Loop Unrolling IDCT rounding Effectiveness (cycles/
organization Computing scenario degree and saturation (issues/cycle) 8 × 8 matrix) Comments

Linear 16 Vertical 1-D IDCTs + Transposition 3× n/a 2.79 37.2 Spilling
encountered

16 Horizontal 1-D IDCTs 3× In FPGA 1.98 36.8 Requires two
RFU-OP-IDs

Total for 2-D IDCT – – – 74.0

Software Two FPGA-IDCTs n/a None 3.81 32.1
pipelined

Software Two FPGA-IDCTs n/a In FPGA 3.69 33.1 Requires two
pipelined RFU-OP-IDs

Software
pipelined

All Vertical 1-D IDCTs + Transposition n/a n/a 3.20 20.1
All Horizontal 1-D IDCTs n/a None 4.10 16.1

Total for 2-D IDCT – – – 36.2

Software
pipelined

All Vertical 1-D IDCTs + Transposition n/a n/a 3.20 20.1 Requires two
RFU-OP-IDsAll Horizontal 1-D IDCTs n/a In FPGA 4.10 16.2

Total for 2-D IDCT – – – 36.3

Note: FPGA-IDCT stands for an IDCT which benefits from reconfigurable hardware support.
SW-IDCT stands for an IDCT carried out in software.

Table 6. Performance figures for IDCT on several high-performance architectures.

Throughput Latency

Implementation FPGA family IDCT/cycle IDCT/sec Cycles ns FPGA utilization

Standard TriMedia (200 MHz) [1] n/a 1/56 3.57 M 56 280 n/a

FPGA-augmented TriMedia EP1K100 (Altera) 1/32 6.25 M 42 210 45%

FPGA alone (55.6 MHz) [19] XCV600 (Xilinx) Non relevant 4.27 M Non relevant 467.9 88%

REMARC [20] Coarse grain 1/54 No 54 No info. 100%

MorphoSys (100 MHz) [21] Coarse grain 1/37 2.70 M 37 370 100%

M.F.A.S.T. (50 MHz) [23] n/a 1/22 2.27 M 22 440 n/a

ManArray [22] n/a 1/34 No 34 No info. n/a

on the Virtex XCV600 device for such implementa-
tion. Thus, the number of cycles which corresponds
to a throughput of 4.27 millions IDCT/sec at a clock
frequency of 55.6 MHz is not relevant, and the com-
parison with the processor-based implementations has
to be made in terms of absolute throughput expressed
in IDCT/sec. With 6.25 millions IDCT/sec, the FPGA-
augmented TriMedia provides an improvement of 46%
in terms of throughput over FPGA alone.

The 2-D IDCT implementation on standard TriMe-
dia exhibits the lowest throughput (1/56 IDCT/cycle),
while the highest throughput (1/22 IDCT/cycle) is
achieved for the implementation on M.F.A.S.T. The

second highest throughput (1/32 IDCT/cycle) is
achieved for the implementation on augmented Tri-
Media, which is an improvement of 75% over stan-
dard TriMedia (40% in terms of computing time).
We would like to comment that the difference in per-
formance between M.F.A.S.T. and FPGA-augmented
TriMedia will diminish if additional computation is
considered, e.g., the post-IDCT rounding and satu-
rating required by MPEG standard [5]. While the
throughput will decrease on M.F.A.S.T., it will remain
about the same on FPGA-augmented TriMedia, since
the 1-D IDCT pipeline can be easily enlarged by an
additional stage for computing post-IDCT rounding



210 Sima et al.

Figure 21. The speed-up of various IDCT implementations on sev-
eral high-performance architectures relative to standard TriMedia.

and saturating (see Table 5). Alternatively, post-IDCT
rounding and saturating can be implemented within the
standard instruction set of TriMedia, since there are still
plenty of empty slots, as already mentioned.

Finally, we would like to mention that the second
highest throughput is achieved with a fine-grain field-
programmable custom computing machine, that is,
FPGA-augmented TriMedia, which exhibits flexibility
over a 2-D convolution-oriented architectures like
M.F.A.S.T. [23] or ManArray [22] for implementing
heterogenous tasks, e.g., variable-length decoding
[5].

5. Conclusions

We have proposed an architectural extension for
TriMedia which encompasses an FPGA–based Recon-
figurable Functional Unit, a hardwired Configuration
Unit managing the reconfiguration of the FPGA, and
the associated instructions. On an FPGA-augmented
TriMedia/CPU64, we obtained a performance im-
provement of 75% in terms of throughput over standard
TriMedia–CPU64 for an 8 × 8 IDCT, at the expense
of two new instructions (SET and EXECUTE), and of
a medium-size FPGA (on the order of 5,000 4-input
LUTs). Since we made the conservative assumption
that the FPGA clock frequency is at most half the
TriMedia clock frequency, the announced figure rep-

resents the lower bound of the performance improve-
ment for the IDCT which can be achieved on FPGA-
augmented TriMedia. Given the fact that the experi-
mental TriMedia is a 5 issue-slot VLIW processor with
64-bit datapaths and a very rich multimedia instruc-
tion set, such an improvement within its target media
processing domain indicates that indicates that aug-
menting TriMedia–CPU64 with an FPGA shows clear
benefit for doing 2-D IDCT.

Acknowledgments

The authors would like to thank Dr. Evert-Jan Pol
with Philips Semiconductor for numerous helpful com-
ments. This project was supported by the doctoral
fellowship RWC-061-PS-99047-ps from Philips Re-
search Laboratories in Eindhoven, The Netherlands.

Notes

1. i.e., the operation slot-width and the number of input and output
registers.

2. i.e., the issuing slot(s) that the computing facility is sensitive to.

References

1. J.T.J. van Eijndhoven, F.W. Sijstermans, K.A. Vissers, E.-J.D.
Pol, M.J.A. Tromp, P. Struik, R.H.J. Bloks, P. van der Wolf, A.D.
Pimentel, and H.P. Vranken, “TriMedia CPU64 Architecture,” in
Proceedings of International Conference on Computer Design
(ICCD ’99), Austin, Texas, 1999, pp. 586–592.

2. J.T. van Eijndhoven and F. Sijstermans, “Data Processing Device
and method of Computing the Cosine Transform of a Matrix,”
U.S. Patent No. 6,397,235, 2002.

3. A.K. Riemens, K.A. Vissers, R.J. Schutten, F.W. Sijstermans,
G.J. Hekstra, and G.D.L. Hei, “TriMedia CPU64 Application
Domain and Benchmark Suite,” in Proceedings of International
Conference on Computer Design (ICCD ’99), Austin, Texas,
1999, pp. 580–585.

4. K.R. Rao and P. Yip, Discrete Cosine Transform. Algorithms,
Advantages, Applications, San Diego, California: Academic
Press, 1990.

5. J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J. LeGall,
MPEG Video Compression Standard, New York, New York:
Chapman & Hall, 1996.

6. C. Loeffler, A. Ligtenberg, and G.S. Moschytz, “Practical Fast 1-
D DCT Algorithms with 11 Multiplications,” in Proceedings of
the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’89), 1989, pp. 988–991.

7. “IEEE Standard Specifications for the Implementations of 8×8
Inverse Discrete Cosine Transform,” IEEE Std 1991, pp. 1180–
1990.

8. S. Brown and J. Rose, “Architecture of FPGAs and CPLDs: A
Tutorial,” IEEE Transactions on Design and Test of Computers
vol. 13, no. 2, 1996, pp. 42–57.



IEEE-Compliant IDCT on FPGA-Augmented TriMedia 211

9. Altera Corporation, ACEX 1K Programmable Logic Family,
Datasheet, San Jose, California, 2000.

10. J.T. van Eijndvhoven, G.A. Slavenburg, and S. Rathnam, “VLIW
Processor has Different Functional Units Operating on Com-
mands of Different Widths,” U.S. Patent No. 6,076,154, 2000.

11. S. Vassiliadis, S. Wong, and S. Cotofana, “The MOLEN ρµ-
coded Processor,” in 11th International Conference on Field-
Programmable Logic and Applications (FPL 2001), vol. 2147
of Lecture Notes in Computer Science (LNCS), Belfast, Northern
Ireland, United Kingdom, Springer-Verlag, 2001, pp. 275–285.

12. M. Sima, S. Vassiliadis, S.D. Cotofana, J.T. van Eijndhoven,
and K.A. Vissers, “Field-Programmable Custom Computing
Machines. A Taxonomy,” in 12th International Conference
on Field-Programmable Logic and Applications (FPL 2002),
vol. 2438 of Lecture Notes in Computer Science (LNCS), Mont-
pellier, France, Springer-Verlag, 2002, pp. 79–88.

13. E.-J.D. Pol, B.J.M. Aarts, J.T.J. van Eijndhoven, P. Struik, F.W.
Sijstermans, M.J.A. Tromp, J.W. van de Waerdt, and P. van der
Wolf, “TriMedia CPU64 Application Development Environ-
ment,” in Proceedings of International Conference on Computer
Design (ICCD ’99), Austin, Texas, 1999, pp. 593–598.

14. A. DeHon, “Reconfigurable Architectures for General-Purpose
Computing,” A. I. 1586, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1996.

15. J. van Eijndhoven, “16-Bit Compliant Software IDCT on Tri-
Media/CPU64,” Internal Report NL-TN 171, Philips Research
Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The
Netherlands, 1997.

16. M. Sima, S. Cotofana, J.T. van Eijndhoven, S. Vassiliadis,
and K. Vissers, “8 × 8 IDCT Implementation on an FPGA-
Augmented TriMedia,” in 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2001),
Rohnert Park, California, 2001.

17. B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, New York, New York: Oxford University Press, 2000.

18. J. Hoogerbrugge and L. Augusteijn, “Instruction Scheduling
for TriMedia,” Journal of Instruction-Level Parallelism, vol. 1,
no. 1, 1999.

19. K. Chaudhary, H. Verma, and S. Nag, “An Inverse Discrete Co-
sine Transform (IDCT) Implementation in Virtex for MPEG
Video Application,” Application Note 208, Xilinx Corporation,
San Jose, California, 1996.

20. T. Miyamori and K. Olukotun, “REMARC: Reconfigurable Mul-
timedia Array Coprocessor,” IEEE Transactions on Information
and Systems, vol. E82-D, no. 2, 1999, pp. 389–397.

21. H. Singh, M.-H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and
E.M.C. Filho, “MorphoSys: An Integrated Reconfigurable Sys-
tem for Data-Parallel and Computation-Intensive Application,”
IEEE Transactions on Computers, vol. 49, no. 5, 2000, pp. 465–
481.

22. G.G. Pechanek and S. Vassiliadis, “The ManArray Embedded
Processor Architecture,” in Proceedings of the 26th Euromicro
Conference, “Informatics: Inventing the Future”, Maastricht,
The Netherlands, 2000, pp. 348–355.

23. G.G. Pechanek, C.W. Kurak, C.J. Glossner, C.H.L. Moller, and
S.J. Walsh, “M.F.A.S.T.: A Highly Parallel Single Chip DSP
with a 2D IDCT Example,” in Proceeding of the International
Conference on Signal Processing Applications and Technology
(ICSPAT ’95), Boston, Massachusetts, 1995, pp. 69–72.

Mihai Sima was born in Bucharest, Romania. He received the MS
degree in Electrical Engineering from ‘Politehnica’ University of
Bucharest, and the Ph.D. degree in Electrical Engineering from Delft
University of Technology, The Netherlands. He had been with the
‘Microelectronics’ Company in Bucharest for 3 years, where he was
involved in instrumentation electronics for integrated circuit test-
ing. Subsequently, he joined the Telecommunications Department of
‘Politehnica’ University of Bucharest, where he had been involved
in digital signal processing and speech recognition for 6 years. More
recently, he had been with the Faculty of Electrical Engineering,
Mathematics, and Computer Science, Delft University of Technol-
ogy, where he worked on reconfigurable architectures for media-
processing domain. He is currently an assistant professor with the
Department of Electrical and Computer Engineering, University of
Victoria, B.C., Canada. His research interests include computer ar-
chitecture, reconfigurable computing, embedded systems, digital sig-
nal processing, and speech recognition.
msima@ece.uvic.ca

Sorin D. Coţofană was born in Mizil, Romania. He received the
MS degree in Computer Science from the ‘Politehnica’ University
of Bucharest, Romania, and the Ph.D. degree in Electrical Engi-
neering from Delft University of Technology, The Netherlands. He
had worked with the Research & Development Institute for Elec-
tronic Components (ICCE) in Bucharest for a decade, being in-
volved in structured design of digital systems, design rule checking
of IC’s layout, logic and mixed-mode simulation of electronic cir-
cuits, testability analysis, and image processing. He is currently an
associate professor with the Faculty of Electrical Engineering, Math-
ematics, and Computer Science, Delft University of Technology,
The Netherlands. His research interests include computer arithmetic,
parallel architectures, embedded systems, reconfigurable comput-
ing, nano-electronics, neural networks, computational geometry, and
computer aided design.
s.d.cotofana@ewi.tudelft.nl



212 Sima et al.

Jos T.J. van Eijndhoven was born in Roosendaal, The Netherlands.
He studied Electrical Engineering at the Eindhoven University of
Technology, The Netherlands, obtaining the M.Sc. and Ph.D. degrees
in 1981 and 1984, respectively, for a work on piecewise linear circuit
simulation. Then, he became a senior research member in the design
automation group of the Eindhoven University of Technology. In
1986 he spent a sabbatical period at the IBM Thomas J. Watson
Research Laboratory, Yorktown Heights, New York, for research on
high level synthesis. In 1998 he joined Philips Research Laboratories
in Eindhoven, The Netherlands, to work on the architectural design
of programmable multimedia hardware and the associated mapping
of media processing applications.
jos.van.eijndhoven@philips.com

Stamatis Vassiliadis was born in Manolates, Samos, Greece. He is
a professor with the Faculty of Electrical Engineering, Mathematics,
and Computer Science, Delft University of Technology, The Nether-
lands. He has also served in the faculties of Cornell University, Ithaca,
NY, and the State University of New York (S.U.N.Y.), Binghamton,
NY. He had worked for a decade with IBM in the Advanced Worksta-
tions and Systems laboratory in Austin TX, the Mid-Hudson Valley

Laboratory in Poughkeepsie, NY, and the Glendale Laboratory in
Endicott, NY. In IBM he was involved in a number of projects re-
garding computer design, organizations, and architectures and the
leadership to advanced research projects. A number of his design and
implementation proposals have been implemented in commercially-
available systems and processors including the IBM 9370 model 60
computer system, the IBM POWER II, the IBM AS/400 Models
400, 500, and 510, Server Models 40S and 50S, the IBM AS/400
Advanced 36, and the IBM S/390 G4 and G5 computer systems.
For his work, he received numerous awards including 23 levels of
Publication Achievement Awards, 15 levels of Invention Achieve-
ment Awards and an Outstanding Innovation Award for Engineer-
ing/Scientific Hardware Design in 1989. In 1990 he has been awarded
the highest number of USA patents in IBM, six of his 70 USA patents
being rated with the highest patent ranking in IBM.
s.vassiliadis@ewi.tudelft.nl

Kees A. Vissers graduated the Delft University of Technology, re-
ceiving his M.Sc. in 1980. He started directly with Philips Re-
search Laboratories in Eindhoven where he was involved in high-
level simulation and high-level synthesis. He had been heading the
research on hardware/software co-design and system level design
for many years, and had a significant contribution to the TriMedia
VLIW processor. From 1987 till 1988 he was a visiting researcher
at Carnegie Mellon University, Pittsburgh, Pennsylvania, with the
group of Don Thomas. He is currently a Research Fellow with Uni-
versity of California at Berkeley, Department of Electrical Engi-
neering and Computer Sciences. His research interests include video
processing, embedded media processing systems, and reconfigurable
computing.
vissers@eecs.berkeley.edu


