
Workshop on Media and Signal Processors for Embedded Systems and SoCs (MASES)
Sept. 22, 2004, Washington D.C., USA

http://www.casesconference.org/cases2004/mases04.html

Caching Techniques for Multi-Processor Streaming Architectures

Martijn J. Rutten1, Jos T.J. van Eijndhoven1, Evert-Jan D. Pol2
1 Philips Research Laboratories

2 Philips Semiconductors
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

{martijn.rutten; jos.van.eijndhoven; evert-jan.pol}@philips.com

Abstract

In the world of complex SoCs for consumer applica-
tions, multiprocessor architectures usually deploy
caching techniques to alleviate the cost of data com-
munication between processing elements. In this appli-
cation domain, the characteristics of streaming appli-
cations play a dominant role in the design of the multi-
processor architectures. These characteristics not only
influence the design at SoC level, but also permeate
the design of lower level blocks, such as caches.

This paper proposes three novel techniques for data
caching in multiprocessor streaming architectures.
These techniques exploit the combination of mecha-
nisms from the domains of stream caching and cache
coherency, optimizing the effectiveness of data caches
in a streaming multiprocessor context.

Our first implementation targets cache systems in a
multiprocessor architecture for high-definition MPEG
decoding, where six function-specific processors com-
municate through shared embedded SRAM. Simulation
results demonstrate the effectiveness of the presented
techniques, even though the caches are of very small
dimensions, i.e., 0.12 mm2 in 0.12µ technology.

1. Introduction

The convergence of consumer applications in the
domestic, automotive, and mobile domains leads to
ever more complex products, which need to perform an
increasing number of different applications. A com-
mon denominator among all of these applications is
that they process data streams, such as audio, video,
voice, and combinations thereof.

In order to provide cost-effective solutions for the
processing requirements of these applications, con-
sumer electronics vendors are deploying complex
SoCs. In the consumer domain, these complex SoCs
generally are based on multiprocessor architectures to
balance hardware cost, power consumption, and deliv-
ered performance. Oftentimes, these multiprocessor

SoCs rely on shared memory for inter-processor com-
munication.

With progressing IC technology, the cost of trans-
port of data has become a dominant factor in the SoC
design [1]. To compound this difficulty, the bandwidth
and latency requirements on this shared-memory in-
crease with the rising application demand for higher
resolution and multiple channels. Therefore, architects
have devised mechanisms that aid in alleviating the
mentioned transport difficulties.

One such technique that is widely applied in SoC
designs is caching, e.g., virtually all CPUs incorporate
caches to mitigate latency and bandwidth requirements
to memory for data and instructions. Caches have been
deployed for decades in a wide range of systems [2].
Many different forms of cache designs have been de-
vised to address the diverse characteristics of different
application domains.

Consumer electronics products are centered on me-
dia applications, such as digital audio processing,
speech processing, digital video coding, image en-
hancement, etc. A general characteristic of media-
processing applications is stream-based processing.
This characteristic can be exploited in the design of
caching systems [3][4].

Despite the maturity of the field of caching tech-
nology, this paper presents three new techniques to
enhance the effectiveness of caches in a stream-based
context. Section 3 outlines the generic processor ‘shell’
that is key in reducing processor complexity and de-
coupling the processor from the transport network.
Relying on the explicit synchronization mechanism
supported by the processor shell, Section 4 introduces
our concepts for caching streaming data in a multi-
processor environment. Section 5 outlines a concrete
implementation of the described techniques in tiny data
caches within the processor shell. This is followed by a
simulation setup in Section 6 that demonstrates the
effectiveness of the presented techniques.

2. Related work

With the advent of media processing, caching tech-
niques optimized for streaming data have received an
increased attention in the form of stream buffers [5],
stride-prediction tables [6][7], and stream caches [3].
Oftentimes, these techniques are applied to traditional
(multi-way) associative caches. The canonical form for
selecting victims in a fully loaded associative cache is
the least-recently used (LRU) mechanism [8]. Such
victimize strategies are oblivious to the stream associ-
ated with cached data, causing cache contention when
the processor accesses multiple data streams through
its cache. To some extent, techniques have been de-
vised to avoid contention by extracting stream
information from the processor’s access pattern and
separate cache blocks accordingly [9]. Section 4.1 out-
lines a cache organization that exploits the model of
computation of media-processing architectures. The
proposed cache organization is more cost-effective
because the operation of the cache fits well to such a
dataflow-oriented model of computation [10].

One of the notoriously difficult problems in the
field of cache technology for inter-processor commu-
nication is cache coherency [11]. This paper combines
the—traditionally separate—domains of stream cach-
ing and multiprocessor cache coherency. In Section
4.2, we apply an explicit dataflow synchronization
scheme [10][12] to control cache coherency and pre-
fetching, fully transparent to the application tasks. This
results in a simpler and more efficient implementation
than generic coherency mechanisms such as bus
snooping [11]. In addition, it avoids the communica-
tion overhead of for instance a write-through architec-
ture [5].

Processors generally apply caches to reduce the la-
tency to access data in memory. For streaming applica-
tions, prefetch methods are deployed to predict upcom-
ing I/O operations and further reduce memory access
latency [3]. State of the art prefetch techniques address
two problems. Firstly, access to a stream must be rec-
ognized by matching the addresses of a series of I/O
operations and extrapolate this to an expected future
I/O access. This recognition of the stream access pat-
tern is troubled by interleaved I/O operations that do
not belong to the stream. Secondly, once a prediction is
found that is not available in the cache, the correspond-
ing block of data needs to be fetched from memory.
Equivalent to normal cached data, prefetched data is
typically inserted into the cache according to the same
victimize strategy, such as LRU.

Literature on prefetch methods focuses on solving
the first problem of predicting future I/O operations
[6][7]. Little attention has been given to the second

problem of explicitly selecting cached data to be re-
placed. When the prefetch data enters the cache, it may
replace data that is still valuable. Therefore, prefetch-
ing may be the cause of further cache misses. Section
4.3 proposes a technique that reverses this traditional
prefetching approach by first predicting cache loca-
tions for which the cached data is not expected to be
further used. The cache subsequently initiates prefetch
actions to fill precisely these cache locations—without
overwriting valuable cached data.

3. Processor shell

Figure 1 shows the mapping of a streaming applica-
tion onto parallel processors. The application tasks
communicate through streams of data, mapped onto
cyclic buffers in shared memory. Processors communi-
cate through their processor shell: a hardware module
that offers generic services to the processor. These
services encompass among others data transport and
inter-task stream synchronization. The shell absorbs a
complex part of the system architecture, and thereby
their existence simplifies processor design. The shells
of different processors can be instantiated from a sin-
gle template.

Task
B

Processor P

Communication & memory

Processor Q

ShellShell

Task
A

Ap
pl
ic
at
io
n

Ar
ch
ite
ct
ur
e

Figure 1. Application tasks mapped onto par-

allel processors. Shells handle inter-processor
communication via stream buffers in shared

memory.

Processors transport all media data to and from
their streams through read and write operations. The
shells internally compute the actual address into a cy-
clic stream buffer in shared memory and access the
data. Thereto, the shells provide a read and write inter-
face. This interface hides aspects such as the width of

system data paths, data alignment in memory, and cy-
clic buffer addressing.

Application tasks mapped onto one or more proces-
sors that explicitly execute a dataflow synchronization
mechanism [10][12]. Through this mechanism, produc-
ing and consuming application tasks synchronize inter-
task data transport. The synchronization consists of
inquiry and commit actions that manage information
on the amount of valid (produced) data and the amount
of empty room (consumed data) in memory that is
shared between the application tasks. The application
tasks initiate these synchronization actions, independ-
ently from data I/O.

The shell implements the inquiry and commit syn-
chronization services. Each shell locally administers
the buffer filling of all streams associated with tasks
executing on the shell’s processor. Shells of different
processors exchange messages to keep their buffer
administration up to date in such way that inquiry and
commit actions of the processor can be served
promptly and locally.

4. Streaming data cache

In general, caches alleviate memory latency and
bandwidth restrictions. Caches may be introduced into
the system design in several places, even at once. In
our current design as depicted in Figure 1, the intention
is to have the shells close to the processors, so that the
latency between the shell and processor is small. How-
ever, the memory is shared and so will have stronger
latency and bandwidth restrictions. Therefore, we en-
dow our design with caching functionality.

Caches can exploit the streaming nature of our tar-
get application domain so well that they can be kept
extremely small. Therefore, we incorporate caches in
each shell. We chose to separate the read and write
data path to more easily support parallel read and write
requests, for instance from a pipelined processor.

The following subsections detail the three most im-
portant and novel concepts applied in these caches.
The remainder of this paper focuses on read accesses
to the read cache, as these are the most challenging
with respect to cache coherency and prefetching. How-
ever, the proposed techniques apply equally well to
handling write requests.

4.1. Cache indexing through stream IDs

For each read or write access, the processor tasks
pass a task and port identifier. The port ID has local
scope for each task. The shell combines the task and
port ID to form a so-called stream identifier.

Stream buffers in shared memory compete for
shared resources, such as cache memory locations. The
processor tasks are I/O intensive, requiring efficient
cache behavior. Thus, contention on the cache re-
sources leads to large and unpredictable task execution
delays. To limit cache contention, the shell indexes its
read or write caches through the stream ID, effectively
decoupling the caching of stream content of different
streams.

The stream ID can be used to select a row of cache
blocks. However, we chose to share cache rows over
different tasks to limit the cost of cache memory in the
shell. This choice only leads to an overhead in switch-
ing between tasks, as tasks execute sequentially on the
processor in a time-shared fashion. Thus, the shell only
uses the port ID to select a cache row, and cache rows
are shared over equivalent port IDs of different tasks.
Moreover, instead of directly addressing of the cache
row by the port ID, the shell applies a hashing function
by which it translates the port ID into a potentially
smaller number of cache rows. Figure 2 depicts this
cache organization. We chose the hashing function to
be a simple modulo operation over the number of
rows. This way, a single task may share a single cache
row over multiple task ports. This is cost-effective
when for instance all media data is read through the
first task port, the task only occasionally reads a burst
of meta data from its second task port, and both ports
are mapped to the same cache line. Sharing the cache
row then avoids the hardware cost of a full row of
cache locations for the second task port.

Hashing
function

Subset of address bits

address

column index

port_id

row
index

data word

Cache content

Figure 2. Addressing cache locations through

port_id and address.

Figure 2 depicts a direct-mapped cache organiza-
tion. This means that every port ID and address com-
bination can only map to a single cache location.
Within a cache row selected through the port ID, a
cache block is indexed through the lower bits of the
I/O address. Thereto, the number of cache blocks in the
row is restricted to a power of two. This results in a
simple and cost-effective cache implementation in the
processor shell. Clearly, such a scheme can be ex-

tended to more general set-associative cache organiza-
tions, where the stream ID selects a cache row and the
lower bits of the address select a set of cache blocks.
The actual data word is then further located through
tag matching on the address.

4.2. Cache coherency through synchronization

For processing streaming data, several groups work
on processors with special stream cache architectures
to improve the data transport to/from memory [3-7]. In
any multiprocessor system that deploys caches to ac-
cess shared memory, cache coherency must be en-
forced to ensure that each processor reads properly
updated data values from shared memory. When a
processor reads data from a stream buffer through a
private cache, the processor needs to ensure validity of
the read data.

Synchronization between tasks is required for inter-
task signaling of delivery or consumption of data. The
inquiry/commit synchronization scheme operates at
byte granularity. A major responsibility of the cache is
to hide the global interconnect data transfer size and
data transfer alignment restrictions from the processor.
As a result, the same memory word may be stored si-
multaneously in the caches of different processors, and
invalidate and dirty information must be handled in
each cache at byte granularity.

In a multiprocessor system designed for streaming
data, these cache coherency issues can be solved in a
specialized and efficient way. The inquiry/commit syn-
chronization mechanism explicitly controls cache co-
herency transparently to the processor. The shell’s
cache coherency mechanism builds on three key ob-
servations:
1. The access window on stream data, which is

granted to a task port by a successful inquiry ac-
tion, is guaranteed to be private.

2. Additional inquiry requests extend the access win-
dow, obtaining new memory space from a prede-
cessor in the cyclic buffer.

3. Local commit requests reduce the access window,
leaving new memory space to a successor in the
cyclic buffer.
Figure 3 depicts the fixed-size cyclic memory space

used as communication buffer. The rotation arrow in
the center shows the direction in which a producing
task A and a consuming task B move their access
points ahead with each commit action. A commit ac-
tion by the producer reduces the access window on
empty room in the buffer, while the producer extends
this access window with a successful inquiry action.
Equivalently, the consumer extends its access window

on valid data through inquiry actions, and reduces the
access window by committing already consumed data.

BBB

A1A1

Newly produced
valid data

Valid data

Empty room A2A2

2

3 4

5

6

70

1
Potentially invalid
memory words

Memory words
Figure 3. Basic stream mapped to a finite

 cyclic buffer.

The inner circle in Figure 3 depicts the memory
words in the buffer. The producer moves its access
point (its write pointer) from A1 to A2 by committing
newly written data. The consumer may subsequently
extend its access window into this new data range. To
ensure cache coherency, the producer’s write cache
must have flushed memory words 4, 5, and 6 to mem-
ory, and the consumer’s read cache must invalidate
cached memory words with these same addresses.

Generalizing the situation of Figure 3 leads to the
following implementation. According to the third ob-
servation, dirty data in the cache that corresponds to
the memory space in the reduction interval needs to be
flushed to the cyclic buffer to make the local data
available for other processors. Thus, on a commit ac-
tion, the write cache flushes all cached data words
whose tag addresses overlap with the address range of
the producer’s previous write pointer to its updated
write pointer after the commit action.

According to the second observation, data in the
cache that corresponds to the new memory space pos-
sibly needs invalidation. A subsequent read action on
such a cache location then results in a cache miss, upon
which the cache loads fresh valid data from the cyclic
buffer. Thus, on a consumer’s inquiry action, the read
cache invalidates all cached data words whose tag ad-
dresses lie between the current write pointer and the
write pointer at the last inquiry action. The consumer’s
shell computes the write pointers from its local buffer
administration. Clearly, discrepancies in buffer ad-
ministration between the producer and consumer shells
due to synchronization messaging delays do not affect
functional correctness.

4.3. Prefetching on dismissed cache locations

Traditionally, prefetching algorithms decide to
fetch data that is predicted to be needed in the direct
future, disregarding the value of data already present in
a fully loaded cache. Thus, these algorithms may vic-
timize valuable data. The processor shell addresses this
problem by carefully selecting when to execute a pre-
fetch. Instead of first predicting future I/O operations,
the shell first predicts dismissing of cached data that is
not expected to be further used. Subsequently, it pre-
dicts an I/O operation that maps onto the dismissed
cache location. Finally, the shell fetches the data to
replace the dismissed data in the cache. Thereby, the
shell reduces the risk of overwriting cached data that is
still needed in the cache.

Prefetching in the processor shell is initiated by
read and invalidate requests. Apart from sporadic ran-
dom accesses within the acquired window of valid
data, processors are expected to access data in a
streaming fashion. Thus, we assume that subsequent
reads belonging to the same stream address a contigu-
ous range in memory in linear order. This streaming
behavior allows the shell to cost-effectively embed
prefetching caches.

If a read action within a stream buffer accesses the
last data word in a cache block, the shell assumes that
all data of the block has been read and can be dis-
missed. At this event, the shell prefetches a data block
from a new location in memory that fits to the cache
location of the dismissed cached data. The shell pre-
fetches the next higher address from the address of the
dismissed data that fits the cache location. As result of
this choice, once the prefetched data arrives, it will be
stored automatically at the location of the dismissed
data. As stream accesses occur in linear order, the
stream is expected to access the prefetched data in the
near future.

Invalidate requests on cached data to control cache
coherency are triggered by processor inquiry actions.
These invalidate events mark locations in the cache to
be considered as empty. Invalidates are caused by a
task that produces new data on the stream. By inquir-
ing if a certain amount of data is available for con-
sumption, the reading processor indicates that it ex-
pects to access this new data in the near future. There-
fore, the processor shell issues a prefetch for those
cache locations marked invalid.

Additionally, the shell prefetches new data for all
cache locations within the selected cache row that fall
outside the range of valid data in the stream buffer.
The latter is of special importance to reduce the latency
of updating a cache row immediately after a task
switch in case that cache rows are shared between

stream buffers of different tasks. For these dismissed
cache locations, the shell prefetches from the memory
addresses that fit the dismissed cache location and are
closest to the current point of access.

The write cache applies a similar strategy by flush-
ing cached data as soon as it predicts that this data will
not be accessed anymore. The write cache initiates
such a preflush when a write access moves to a next
word. With a streaming write behavior, the previous
word will not be further accessed, and its cache loca-
tion can be made available for expected future.

5. Implementation

We deploy the caching techniques in a multiproc-
essor architecture where a number of function-specific
processors together execute a dataflow-style applica-
tion. Processors communicate through stream buffers
allocated in shared embedded SRAM. Each processor
has its own processor shell that handles all data access
and buffer administration of the streams associated
with the application tasks that are mapped onto the
processor.

Figure 4 depicts the internal architecture of the read
module inside the processor shell. In addition, the
processor shell includes a similar write module, a syn-
chronization module that maintains administration of
stream buffer filling, and a task scheduler. The shell
implements a control interface to allow access to pro-
grammable registers—such as the stream and task table
entries in Figure 4—for system configuration.

Read control
Task table Stream table

Read
request

Control

Processor interface

Invalidate/
Update
request

Transport
receive

Transport
FIFO

Read data Read command

Split-transaction read bus interface

Control interface

S
tre

am
 s

yn
ch

ro
ni

za
tio

n
in

te
rfa

ce

Transport
send

Read cache

Cache lines

Barrelshift

Requested
read data

Read Prefetch/InvalidateCached
data

Shift
param

Figure 4. Read unit inside the processor shell.

We deploy the read and write caches in a multi-
processor architecture that targets dual-stream, high-
definition MPEG-2 encoding and decoding [10]. In
this setup, the processor shell is targeted to execute at
around 150 MHz, providing an average 4-cycle latency

for single word read and write transactions on a dual
128-bits bus to on-chip SRAM. Initial synthesis results
indicate that a typical instantiation of the processor
shell template occupies 0.2 mm2 in CMOS12 technol-
ogy, out of which the read and write modules absorb
approximately half of the total shell size.

5.1. Read requests

The Read Control component in Figure 4 handles
the read requests from the processor. The processor
communicates the port ID and the requested number of
bytes to read through a handshake protocol. The Read
Control component subsequently indexes the task table
with the port ID and obtains the index into the stream
table. The stream table administers the current byte-
level access point (the read pointer) into the communi-
cation buffer, as well as the size of the buffer for cyclic
addressing. Based on the current access point and the
requested number of bytes, the Read Control compo-
nent generates parallel requests to the cache at the level
of memory words. A memory word matches the bus
and memory data width, and is for instance 128 bits
wide.

The Read Cache component indexes the cache us-
ing the port ID, and performs a tag match on the ad-
dress passed by the Read Control component. On a
cache miss, the cache issues a read request to the
Transport Send component. The Transport Send com-
ponent places the cache location of the requested data
in a queue, to be accessed by the Transport Receive
component upon receiving the data from the memory.
Received data words are passed through the cache to
the Barrelshift component. The barrel shifter combines
data from potentially multiple cache words and left
shifts the result before acknowledging the processor
read request.

The Transport Send and Receive components are
separated to enable split-transaction requests, in which
the Transport Send component can issue a new request
every bus cycle without waiting for the requested data
to return. This pipelining of bus requests greatly re-
duces the latency for multiple transactions, e.g. on un-
aligned read requests from the processor that span mul-
tiple memory words, or invalidate actions that triggers
multiple prefetch requests.

5.2. Update/Invalidate requests

The synchronization module in the shell signals
update/invalidate events to the cache, triggered by in-
quiry and commit actions from the processor. Update
events consist of a port ID and the size in bytes of a
corresponding commit action by the processor. The

Read Control component uses this information to up-
date its current read pointer in the stream table.

An invalidate event is accompanied with the port
ID and the current buffer filling of the requested
stream. Upon such invalidate requests, the Read Con-
trol component computes an address range of cache
words that potentially need to be invalidated, based on
the current buffer filling and the filling at the previous
inquiry action—as maintained in the stream table. The
cache matches the tag address of all cache locations of
the indicated stream and invalidates cached data words
that lie within the specified address range.

5.3. Prefetch requests

The shell initiates prefetch requests on both read
and inquiry (invalidate) events from the processor. To
this end, the Read Control component passes an ad-
dress range of available data words in the communica-
tion buffer to the cache through the Prefetch/Invalidate
interface. The cache subsequently issues prefetch re-
quests for each cache location that is invalidated, or
has a tag address behind the current read pointer or
outside the range of valid data.

6. Results

This section gives two experiments to show the ef-
fectiveness of the proposed caching techniques on a
heterogeneous multiprocessor architecture [10]. The
experiments execute on a cycle-accurate, bit-true Sys-
temC [13] model of the processor shell and communi-
cation network. The application tasks execute on
highly abstract models of function-specific processors.
While the generic caches of Section 5 allow arbitrary
access patterns, the simulation results are based on our
multiprocessor MPEG implementation that exhibits a
largely linear access pattern for inter-task communica-
tion.

6.1. Dual-task discrete cosine transform

We present an example study into the behavior of
the read and write caches of a hardwired processor that
computes the inverse discrete cosine transform (IDCT)
for two different MPEG-2 streams. The IDCT proces-
sor executes the two IDCT tasks in a time-shared fash-
ion. Each task reads coefficient data from its input
stream, and produces blocks of pixels on its output
stream.

The IDCT read and write caches connect to sepa-
rate read and write buses of 128 bits wide to on-chip
memory. The processor strictly reads and writes in a
streaming fashion. The IDCT processor has two 32-bit

data ports to its shell, on which it issues variable-
length read and write requests. It is the task of the shell
to perform address generation. The processor has no
idea on memory alignment issues—the read and write
requests may occur on an unaligned address. In this
setup, the shell read cache is sized to contain four bus
words of 128-bit, which are shared by the input
streams of both IDCT tasks. The write cache contains
only two bus words, shared by the output streams of
both tasks. Thus, total cache size of the shell is 96
bytes.

Table 1. Dual stream DCT read/write cache
behavior.

No cache Cache, no pre-
fetch / preflush

Cache, prefetch
 / preflush

Rd Wr Rd Wr Rd Wr
Misses
(x 103)

- - 466 274 0 0

Transfers
(x 103)

1117 994 466 428 532 428

Average
latency

11 3 7 3 2 3

Table 1 shows the actual cache behavior. The ex-

periment shows that the caches dramatically reduce the
bandwidth requirement on the communication net-
work. Additionally, the prefetch mechanism reduces
the average latency from 11 to 2 cycles. The reduction
in write latency by issuing preflush actions is not visi-
ble as the simulation model immediately acknowledges
a write request—even before the data is written in the
cache. Even without a write cache, the shell contains a
one-word write buffer to hide the latency of accessing
the write bus from the processor.

Despite the tiny cache sizes, the (shell of the) IDCT
processor experienced not a single read cache miss as
result of the automatic prefetch, although some reads
had to wait a few cycles because the prefetch did not
yet complete. The write cache allocates on a write-miss
(does not fetch). Correspondingly, the preflush empties
dirty cache words to memory, so that the allocate not
once had to delay for first flushing a dirty cache word.

6.2. Multiprocessor MPEG-2 decoding

To show the effectiveness of the caches as part of
the generic processor shell, we chose MPEG-2 decod-
ing as representative application. We partitioned the
MPEG-2 decoding application into six processors:
DMA, variable-length decoding, picture and slice de-
coding, run-length decoding and inverse quantization,
inverse discrete cosine transform, and motion compen-
sation. These processors are vary widely in I/O access

patterns and streaming behavior. This spectrum of be-
haviors is representative for the entire application do-
main.

Each processor has its own shell and communicates
through stream buffers in on-chip memory. The refer-
ence pictures for motion compensation are accessed
from off-chip memory and do not pass through the
shell. The cache sizes vary with the number of input
and output streams to the processors. Each input
stream is assigned a cache line of maximally 4 bus
words, while each output stream is assigned to a cache
line of 2 bus words.

Table 2. Cache influence on MPEG-2 execution
time.

 No caches Caches, no
prefetch /
preflush

Caches, prefetch
/ preflush

tennis 100 75 55
teeny 100 73 52
tech 100 74 64
oslo 100 73 61

We decode a number of MPEG-2 streams on the

simulated architecture. Table 2 gives the normalized
execution time for three standard-definition and one
high-definition (oslo) MPEG-2 streams of 8, 19, 31,
and 30 frames, respectively. The table shows that the
prefetching caches—despite their tiny sizes—
significantly reduce the overall execution time.

7. Conclusion

This paper presents three innovative techniques for
data caches that are designed for streaming multiproc-
essor architectures. The primary technique uses a ge-
neric dataflow synchronization scheme to accomplish
cache coherency and automatic prefetch-
ing/preflushing. These mechanisms are transparent to
the application tasks.

Secondly, the cache organization reserves in prin-
ciple non-overlapping cache locations for each data
stream accessed by the processor. The processor se-
lects a set of cache locations through a stream identi-
fier that is unique for the dataflow structure. This
greatly reduces the complexity of tag matching hard-
ware, while avoiding cache contention with respect to
conventional associative caches. However, depending
on the behavior of the processor, the system designer
may decide to allocate a single cache line for multiple
streams.

Thirdly, the cache employs a new technique for
data prefetching that aims to prevent overwriting valu-

able cached data. The method identifies cache loca-
tions for which it predicts that the data content is not
expected to be further used and can be dismissed. In-
formation on the data availability in stream buffers in
shared memory—provided by the synchronization
scheme—ensures that no invalid data words are pre-
fetched.

Even though the techniques can be used for larger
cache designs, our specific implementation focuses on
tiny caches of around a 100 byte. Simulation experi-
ments show that the portrayed cache architecture effec-
tively reduces utilized bandwidth and access latency to
on-chip memory. We aim to deploy this cache
architecture in a range of heterogeneous
multiprocessor SoC subsystems for consumer
electronics devices.

References

[1] Doug Burger, James R. Goodman, and Alain Kägi,
“Limited Bandwidth to Affect Processor Design”, IEEE
Micro, vol. 17, no. 6, pp. 55-62, Nov./Dec. 1997.

[2] Alan J. Smith, “Cache Memories”, ACM Computing
Surveys, vol. 14, no. 3, pp. 473-530, Sept. 1982.

[3] Daniel F. Zucker, Ruby B. Lee, and Michael J. Flynn,
“Hardware and Software Cache Prefetching Techniques
for MPEG Benchmarks”, IEEE Trans. Circuits and Sys-
tems for Video Technology, vol. 10, no. 5, Aug. 2000.

[4] Z. Wu and W. Wolf, “Study of Cache Systems in Video
Signal Processors”, IEEE Workshop on Signal Process-
ing Systems, pp. 23-32, Oct. 1998.

[5] Norman P. Jouppi, “Improving direct-mapped cache
performance by the addition of a small fully-associative
cache and prefetch buffers”, Proc. 17th Int. Symp. Com-
puter Architecture, pp. 364-373, May 1990.

[6] Tien-Fu Chen and Jean-Loup Baer, “Effective Hard-
ware-Based Data Prefetching for High-Performance
Processors”, IEEE Transactions on Computers, vol. 44,
no. 5, pp. 609-623, May 1995.

[7] J. Fu, J. Patel, and B. Janssens, “Stride directed pre-
fetching in scalar processors”, Proc. 25th Int. Symp.
Computer Architecture, pp. 102-110, Dec 1992.

[8] J.L. Hennessy and D.A. Patterson, Computer Architec-
ture: A Quantitative Approach, Morgan Kaufmann
Publ., San Mateo, CA, 1990.

[9] R.K. Arimilli et al., Extended Cache State with Pre-
fetched Stream ID Information, US Patent US6360299,
March 19, 2002.

[10] Martijn J. Rutten, et al., “Eclipse: A Heterogeneous
Multiprocessor Architecture for Flexible Media Process-
ing”, IEEE Design and Test of Computers: Embedded
Systems, pp. 39-50, July/Aug. 2002.

[11] David E. Culler, Jaswinder Pal Singh, with Anoop
Gupta, Parallel Computer Architecture, A Hard-
ware/Software Approach, Morgan Kaufmann Publ., San
Francisco, CA, 1990.

[12] O. P. Gangwal, A. Nieuwland, and P. Lippens, “A Scal-
able and Flexible Data Synchronization Scheme for
Embedded HW-SW Shared-Memory Systems”, Int.
Symp. System Synthesis (ISSS), pp. 1-6, Oct. 2001, Mon-
tréal, Canada.

[13] SystemC User’s Guide, version 2.0, www.systemc.org/,
2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

