
Accepted for publication to the 10th International Symposium
On Hardware/Software Codesign (CODES’02,

May 6-8 2002, Estes Park, CO, USA

Design of Multi-Tasking Coprocessor Control for Eclipse
Martijn J. Rutten1, Jos T.J. van Eijndhoven1, Evert-Jan D. Pol2

1 Philips Research Laboratories
2 Philips Semiconductors

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
{martijn.rutten, jos.van.eijndhoven, evert-jan.pol}@philips.com

ABSTRACT
Eclipse defines a heterogeneous multiprocessor architecture tem-
plate for data-dependent stream processing. Intended as a scalable
and flexible subsystem of forthcoming media-processing systems-
on-a-chip, Eclipse combines application configuration flexibility
with the efficiency of function-specific hardware, or coprocessors.
To facilitate reuse, Eclipse separates coprocessor functionality
from generic support that addresses multi-tasking, inter-task syn-
chronization, and data transport. Five interface primitives accom-
plish this separation. The interface facilitates the design of co-
processors that require complex control to handle data-dependent
I/O, saving/restoring task state upon task switches, and pipelined
processing. This paper presents how this interface enables the
design of such reusable yet cost-effective coprocessors.

1. INTRODUCTION
The advent of new media applications such as time-shift re-
cording, 3D games, video conferencing, and MPEG-4-like inter-
activity demands an increasing flexibility of consumer electronics
products. Moreover, the variation in the required set of applica-
tions per product, per country, and over time as standards evolve
calls for an integral approach.
Managing complexity, design cost, and time-to-market of such
resource-constrained appliances requires a generic and scalable
media-processing platform that can be deployed in a wide range
of products. Currently, several vendors are entering the market
with platforms that address these issues to some extent [1][2].
These media processing platforms approach the time to market of
the processors in the PC market, but require an order of magni-
tude lower cost while delivering significantly higher performance.
This leads to the realm of Systems-on-a-Chip (SoC), consisting of
interconnected subsystems, each optimized for a specific purpose.
Complex media-processing SoCs exploit the performance density
of sophisticated hardwired function modules to implement critical
parts of the targeted media applications, while endowing the sys-
tem with a sufficient level of flexibility by embedding multiple
programmable cores. Currently, these subsystems are either hard-
wired or fully programmable.

We developed the Eclipse architecture template [3] to support the
design of versatile SoC subsystems. Thereto, Eclipse introduces a
mix of programmable and hardwired functions in a single subsys-
tem. Instances of the Eclipse template combine function-specific
hardwired modules or coprocessors with one or more program-
mable cores. These subsystems can be configured for various
application graphs, such as MPEG decoding or encoding applica-
tions. Eclipse coprocessors operate at a medium function grain,
which allows them to be reused in different application graphs.
Moreover, the coprocessors are multi-tasking and can time-share
tasks from a set of applications. This way, application complexity
is not restricted to the number of coprocessors in the architecture.
For instance, a representative medium-grain function is the dis-
crete cosine transform (DCT) required for MPEG encoding and
decoding. An Eclipse DCT coprocessor may time-share the in-
verse and forward DCT functions needed for concurrent MPEG-2
encoding and decoding in a time-shift recording application.

7DVN
$

7DVN
%

7DVN
&

),)2

,QSXW�SRUW

2XWSXW�SRUW

&RSURF�Q&RSURF��

&RPPXQLFDWLRQ
	�0HPRU\

$SSOLFDWLRQ

$UFKLWHFWXUH

0DSSLQJ

. . .

Figure 1. Application to architecture mapping.
Figure 1 depicts how application tasks are mapped onto the co-
processors. Eclipse applications are specified as a set of tasks that
communicate with each other through FIFO channels [4]. A chan-
nel connects to the output port of a producing task and the input
port of one or more consuming tasks. Application channels are
mapped onto data streams with buffers allocated in shared on-chip
memory. All coprocessors execute autonomously without requir-
ing CPU support for task scheduling or synchronizing access to
these stream buffers.
The key challenge we address is the definition of an interface that
supports the construction of cost-effective coprocessors for use in
multiprocessor SoC subsystems such as Eclipse. These coproces-
sors may require complex control to handle data-dependent be-
havior, multi-tasking, and pipelining. This paper addresses these
issues and describes generic concepts for minimizing synchroniza-
tion and task-switching overhead while enhancing performance
through pipelining.

Section 2 gives an overview of the Eclipse architecture from a
coprocessor viewpoint and introduces a uniform interface that
separates coprocessors from the generic multiprocessor infrastruc-
ture. Section 3 shows the trade-offs to be made in designing co-
processors that deploy this interface. The key design issues,
namely synchronization, multi-tasking, and pipelining, are subject
of Sections 3.1 to 3.3. The paper subsequently gives initial results
in Section 4, discusses related work in Section 5, and concludes
with Section 6.

2. ECLIPSE ARCHITECTURE
Eclipse is a scalable architecture template. The number and type
of coprocessors may vary over instances. Moreover, the commu-
nication network to transport and synchronize data between co-
processors may change over instances as communication band-
width requirements vary. Eclipse introduces the coprocessor shell
[3] to facilitate reuse of coprocessor designs over different Eclipse
instances with different communication network characteristics.
Figure 2 depicts this hardware interface block that separates the
computation hardware (coprocessors) from the communication
hardware (buses, memory). The shell alleviates coprocessor de-
sign by absorbing many system-level issues, such as multi-
tasking, stream synchronization, and data transport. Thus, coproc-
essor designers can concentrate on application functionality.

&RPPXQLFDWLRQ

*HQHULF�VXSSRUW

&RPSXWDWLRQ&RSURFHVVRU&RSURFHVVRU&38

6KHOO�+: 6KHOO�+:
6KHOO�6:
6KHOO�+:

WDVN�OHYHO���LQWHUIDFH

FRPPXQLFDWLRQ����LQWHUIDFH

&RPPXQLFDWLRQ�QHWZRUN

0HPRU\

Figure 2. Coprocessor shell for system-level support.
The shells are distributed, such that each shell can be instantiated
close to the coprocessor that it serves. Each coprocessor interacts
with its shell through five generic interface primitives. While
specified in the form of software function calls, Eclipse imple-
ments these primitives in hardware with an identical interface: a
master-slave handshake with corresponding argument and result
passing. Figure 2 represents this as the ‘task-level interface’ be-
tween coprocessors and their shells.
For multi-tasking, the coprocessor issues the following primitive:
int GetTask(int *task_info).

The coprocessor calls this primitive whenever it allows a task
switch to another task mapped on the coprocessor. The return
value is the identifier of the next task (task_id) to execute on the
coprocessor. The task_info value indicates which function the
selected task should perform, e.g. forward or inverse DCT.
The primitives for accessing data in the stream buffer are:
void Read(int task_id, int port_id, int offset,
 int n_bytes, Bytes *bytevector);
void Write(int task_id, int port_id, int offset,
 int n_bytes, const Bytes *bytevector),

and the primitives for synchronizing access to data in the stream
buffer are:
bool GetSpace(int task_id, int port_id,
 int n_bytes);

void PutSpace(int task_id, int port_id,
 int n_bytes).

All tasks ports (Figure 1) map to one physical coprocessor-shell
interface that handles Read, Write, GetSpace/PutSpace, and
GetTask requests in parallel. The coprocessor is responsible for
serializing requests from different task ports. To discern between
different streams, the coprocessor passes an identifier of the active
task port to the shell through the port_id argument of the above
primitives. The shell subsequently combines the task_id and
port_id arguments into an identifier of the associated stream for
sending synchronization messages to a predecessor/successor task
and to access the stream buffer in shared memory. Note that while
the GetSpace and PutSpace primitives do not distinguish be-
tween input and output ports, a GetSpace on an input port in-
quires available data for reading, whereas a GetSpace on an out-
put port inquires available room for writing into the stream buffer.
Likewise, a PutSpace call on an input port commits empty room
available for writing, while a PutSpace on an output port com-
mits valid data written in the stream buffer.
The use of the coprocessor-shell primitives and their arguments is
subject of Section 3. These coprocessor-shell primitives are ge-
neric and simplify coprocessor design while supporting the design
of coprocessors that require complex control to cope with for
instance data-dependent I/O, variable packet sizes, and pipelined
processing. In all five cases the coprocessor has the initiative for
taking action; all primitives are called by the coprocessor and
implemented by the shell.

3. COPROCESSOR CONTROL
In dedicated coprocessors, state save/restore is specific for the
function implemented in the coprocessor. This differs from CPU
software where the operating system saves and restores task state
in a generic way. Eclipse coprocessors avoid the hardware costs
required for saving task state at arbitrary points in time by explic-
itly deciding on the time instances during task execution at which
they can switch the running task. The coprocessor can continue up
to the point where it has minimal or no state. At such moments,
the coprocessor asks its shell which task it should perform next by
calling the GetTask primitive. We denote the intervals between
GetTask inquiries as processing steps.
The coprocessor executes an infinite loop over such processing
steps. The following simplified code shows such a coprocessor
control loop, as an example of multi-tasking coprocessor design
using the five Eclipse primitives. The example illustrates the sepa-
ration of coprocessor functionality, implemented by the Compute
function, from coprocessor control to handle multi-tasking, syn-
chronization, and data communication.
while(true) {
 // Perform a single processing step
 task_id = GetTask(&task_info);

 // Is there data/room for reading/writing?
 blocked = !GetSpace(task_id, IN, INSIZE)
 || !GetSpace(task_id, OUT, OUTSIZE);
 if (blocked) continue; // No useful work to do

 Read(task_id, IN, 0, INSIZE, &in_data);
 PutSpace(task_id, IN, INSIZE); // Commit room

 Compute(task_info, in_data, &out_data);

 Write(task,_id OUT, 0, OUTSIZE, out_data);
 PutSpace(task_id, OUT, OUTSIZE); // Commit data
}

Sections 3.1 through 3.3 explain, extend and modify this trivial
example to include random data access with FIFO synchroniza-
tion, saving and restoring state upon task switches, and parallel-
ism through a pipelined implementation.

3.1 Synchronization and Data Transport
From the view of a coprocessor task port, a data stream looks like
an infinite tape of data, with a current ‘point of access’. With the
GetSpace call, the coprocessor asks the shell permission for ac-
cess to a certain data space ahead of this current point of access.
Here, data space signifies available data for reading from an input
data stream, or available room for writing data to an output
stream. If the shell grants permission, the coprocessor can perform
Read or Write actions inside this requested space, with variable-
length data (through the n_bytes argument), and on random
access positions (through the offset argument). The shell denies
permission by returning false on the GetSpace call when there
is not sufficient data or room available. In this case, the coproces-
sor task cannot proceed and either the coprocessor can switch task
or the task can keep on trying to proceed by repeatedly issuing
GetSpace requests. Section 3.2 details these alternatives.

D��,QLWLDO�VLWXDWLRQ�RI�µGDWD�WDSH¶�ZLWK�FXUUHQW�DFFHVV�SRLQW�

E��*HW6SDFH�DFWLRQ�SURYLGHV�ZLQGRZ�RQ�UHTXHVWHG�VSDFH�

F��5HDG�:ULWH�DFWLRQV�RQ�FRQWHQWV�

G��3XW6SDFH�DFWLRQ�PRYHV�DFFHVV�SRLQW�DKHDG�

QBE\WHV�

RIIVHW

QBE\WHV�

Figure 3. Synchronization and data I/O through a single port.
After one or more GetSpace calls—and optionally several
Read/Write actions—the coprocessor can decide it is finished
with processing (some part of) the data and issue a PutSpace
call. This call advances the point-of-access a certain number of
bytes ahead, in size constrained by the previously granted space.
Figure 3 depicts this process.
The coprocessor is responsible for functionally correct behavior
when using the interface primitives; i.e. the coprocessor must
adhere to denied GetSpace requests, and not attempt to read or
write data outside the window of granted space. Moreover, the
coprocessor must maintain correct ordering when serializing si-
multaneous requests on the same stream. The latter specifically
concerns pipelined coprocessors where independent parallel pipe-
line stages issue requests on the same stream (Section 3.3).

3.1.1 Granularity of Synchronization
Synchronization of data transport—implemented through the
GetSpace and PutSpace synchronization primitives—is fully
separated from the actual data transport, implemented through the
Read and Write primitives. The n_bytes argument of
GetSpace and PutSpace calls allows the coprocessor to syn-

chronize streams at a granularity and rate that differs from the
individual Read and Write calls.
The number of bytes that can be transferred on a single Read or
Write request is restricted to the width of the corresponding co-
processor-shell interface. Thus, a coprocessor may need to issue
multiple reads or writes to transfer one logical unit of data, e.g. a
block of 8x8 DCT coefficients. Synchronization is mostly done at
a data grain that is meaningful to the application context in order
to avoid building up internal state between task executions.
Within this constraint, the coprocessor designer must balance the
overhead incurred by a high synchronization rate versus the high
buffer requirements of synchronizing between coprocessors at a
low rate.

3.1.2 Random Access
Since synchronization is not coupled to individual read and write
actions, a coprocessor can randomly access the data within an
acquired window of granted space. The Read and Write primi-
tives therefore allow a random offset from the current point of
access through their offset argument. One example of random
access is a coprocessor that uses a buffer in shared memory as
scratch pad, e.g. as texture memory in 3D graphics, look-up table,
or for storing the state of a task (Section 3.2). Contrary to data
streams between coprocessors or tasks, this scratch-pad memory is
allocated to one task only, and can therefore be accessed without
GetSpace/PutSpace synchronization.
The Eclipse communication network is optimized for streaming
data, e.g. through a wide bus to a wide shared memory. Moreover,
the Eclipse shells incorporate small read and write caches that can
perform automatic prefetching for streaming data access. There-
fore, random access on Eclipse streams should be used cautiously.
For instance, the transpose buffer between horizontal and vertical
DCT operations can be mapped onto a shared memory buffer,
accessed with the Eclipse primitives. However, the random byte-
level access to this buffer will induce significant overhead. There-
fore, such a small buffer is better kept local inside the coproces-
sor.
Coprocessors requiring random access at a coarser grain can in-
crease cost-effectiveness by mapping their buffers in shared mem-
ory. This occurs when the coprocessor jumps randomly between
large groups of data in the buffer, but accesses the data within a
group in a streaming fashion. This is typically the case in DV
decoding, where each macroblock is coded with a fixed number of
bytes at a predetermined position in the bitstream. Whenever the
variable-length coded macroblock requires more than this re-
served data segment, the remainder is added to a second segment
for which the macroblock data does not occupy the full segment.
The macroblocks in a frame are shuffled to distribute these mac-
roblock tails evenly throughout the frame. Therefore, the macrob-
lock data within a segment can be accessed sequentially, but ran-
dom access is needed to jump from one macroblock to a next.

3.1.3 In-Place Updates
Figure 4 illustrates a situation in which a task B performs in-place
updates of the data in a stream buffer between two other tasks A
and C. Compared to connecting separate input and output streams
to task B, sharing the stream buffer between three tasks can be
advantageous when task B only performs occasional modifications

in the data stream and therefore does not need to transport the
entire stream contents.

7DVN
$

7DVN
%

7DVN
&

Figure 4. Task B performing in-place updates.
This is for instance the case when task B mostly just watches the
data, maybe by inspection of some header information only (not
reading all stream data) and mostly allowing the data to pass from
A to C without modification. Relatively infrequently, it could
decide to change a few items in the stream. In a practical situation,
the main CPU may intervene in the communication between two
hardware coprocessors to patch the stream to correct errors caused
by hardware flaws, to adapt the stream towards slightly different
stream formats, or simply for debugging purposes.

& % $
Figure 5. Data stream shared by 3 tasks.

The separation of synchronization and data transport allows such
an efficient implementation. Figure 5 shows the data-tape view of
such a setup with three tasks sharing a single buffer in shared
memory to reduce memory traffic and coprocessor workload. The
figure shows the access points of tasks A, B, and C, where A is a
writer and leaves valid data behind, B performs the in-place up-
dates, and task C is a reader and leaves empty space behind.

3.2 Task Switching
Multi-tasking on the Eclipse coprocessors is a shared responsibil-
ity between the coprocessor and the shell. The shell takes care of
task scheduling [5], while the coprocessor is responsible for pro-
viding task switch points and saving and restoring the task state (if
any) upon a task switch.
As outlined in Section 3.1.1, coprocessors operate on a logical
unit of data—e.g. an 8x8 block of DCT coefficients—
encapsulated in a data packet. The coprocessors can have differ-
ent patterns of packet consumption and creation. When consump-
tion at the input is synchronized with packet creation at the output
ports of the coprocessor, the coprocessor can switch tasks at the
moments when the data state is void. Typically, coprocessor state
is minimal after processing of a complete packet. For instance, a
DCT coprocessor is virtually stateless after processing a block of
DCT coefficients. To avoid context switch overhead, Eclipse co-
processors are generally designed to process an integer number of
packets in a single processing step.
However, coprocessors cannot always determine the required
amount of space for completing a processing step at the start of
the processing step. This is for instance the case when the coproc-
essor control has a data-dependent condition upon which it may
read more data from a second input port. In such situations, the
coprocessor needs to inquire for additional space during a proc-
essing step and may not be able to continue executing the current
task. The coprocessor designer can decide to let the coprocessor
wait for the space to arrive, and effectively block the coprocessor.
Alternatively, the coprocessor can call GetTask and give the shell
the opportunity to provide a new task.

The following subsections detail various options for handling task
switching in the coprocessor. While Sections 3.2.1 and 3.2.2 are
applicable for handling the aforementioned conditional I/O, Sec-
tions 3.2.3 and 3.2.4 describe state save/restore solutions that also
apply in the more general case when task state is not void upon a
task switch. For instance, a variable-length decoder (VLD) must
keep track of state information to correctly parse the remainder of
an MPEG bitstream in subsequent processing steps.

3.2.1 Busy Wait
A trivial form of avoiding state save and restore is to avoid calling
GetTask when the running task blocks on a negative answer to a
GetSpace request. The coprocessor then ‘busy waits’ on the re-
quested space to arrive by repeatedly calling GetSpace. While
this simplifies coprocessor control, it endangers the reliability of
the system as other tasks mapped on the same coprocessor must
wait for the blocked task to give up the resource.
One could reason that whenever the coprocessor already received
some part of a packet, the rest of the packet will be produced soon
enough to allow a busy wait. This only holds when the consuming
coprocessor knows the precise behavior of the producer, creating
a dependency between the coprocessors. However, this assump-
tion is invalid, as Eclipse coprocessors can be connected in vari-
ous application graphs. For example, the normal predecessor of a
DCT coprocessor may be a hardware VLD coprocessor that al-
ways completes the production of a DCT packet without interrup-
tions. In another application setup, the DCT input stream may be
generated by the main CPU, whose preemptive operating system
may interrupt the production of a DCT packet for a long time, e.g.
to handle a higher priority task.
Thus, busy wait cannot be allowed without a time-out mechanism
after which the task state may need to be saved and the task must
free the coprocessor to allow other tasks to meet their deadlines.
Although this does not avoid state save/restore hardware cost, the
busy wait with time-out improves performance by avoiding the
context switch overhead whenever the requested data arrives be-
fore the time-out period.
Using busy wait increases the probability of creating deadlock.
The Eclipse shells implement performance-measurement support
in hardware. Run-time control by software can use these hardware
measurements to detect deadlock and re-adjust application pa-
rameters. However, the targeted media-processing applications
such as MPEG-2 decoding are sufficiently simple to allow an
application expert to guarantee deadlock-free behavior.

3.2.2 Discarding Partial Work
A coprocessor does not have to surround each Read or Write
request with GetSpace and PutSpace calls, but can postpone the
PutSpace actions to the end of a processing step. As long as the
coprocessor does not commit consumed or produced data by call-
ing PutSpace, the data remains available in the stream buffer.
Thus, upon a negative answer to a conditional GetSpace request,
the coprocessor can simply discard the current work and continue
with another task. When the requested space becomes available,
the coprocessor can restart the processing step from the begin-
ning, re-computing the initial part of the processing step:
while(true) {
 task_id = GetTask(&task_info);

 blocked = !GetSpace(task_id, IN, INSIZE)
 || !GetSpace(task_id, OUT, OUTSIZE);
 if (blocked) continue;

 Read(task_id, IN, 0, INSIZE, &in_data);

 more = ComputeA(task_info, in_data);

 if(more) { // Conditional input
 if (!GetSpace(task_id, IN2, IN2SIZE))
 continue; // Abort processing step
 Read(task_id, IN2, 0, IN2SIZE, &in2_data);
 PutSpace(task_id, IN2, IN2SIZE);
 }
 PutSpace(task_id, IN, INSIZE);

 ComputeB(task_info, in_data, in2_data,
 &out_data);

 Write(tak_id, OUT, 0, OUTSIZE, out_data);
 PutSpace(task_id, OUT, OUTSIZE);
}

This example implements a second exit point from the processing
step: the continue statement inside the if(more) condition.
However, a single entry point is maintained (the start of the infi-
nite loop). If the second exit point is taken, a later execution for
the same task_id will redo the initial part of the processing step,
including Read(IN,…) and ComputeA(…). The Read(IN,…)
action will read the same data as before, since the example delib-
erately postponed committing this read with PutSpace(IN,…)
until a granted GetSpace(IN2,…) assures that the processing
step can complete.
A practical example related to this way of postponing the commit
of earlier read or write actions is the separate stream holding
quantization tables as input to an MPEG-2 quantization coproces-
sor. At the start of a new task, the coprocessor reads the quantiza-
tion table from this input stream. This table remains available in
the stream since the coprocessor only commits (via PutSpace)
the read actions when a data packet from a second input stream—
holding the data to be quantized—signifies in the header field of
the packet that a new quantization table is required. The coproces-
sor may re-read the same quantization table from the stream for
many processing steps before committing the table data and read-
ing a new table.

3.2.3 State Save in Internal Coprocessor Memory
The previous two sections avoided saving task state when the
running task blocks on conditional I/O. However, coprocessors
cannot always avoid state save/restore functionality. The coproc-
essor can save and restore task state locally inside the coproces-
sor, allowing fast context switching without the need for (exter-
nally visible) reads and writes. Clearly, this is only economically
feasible if the amount of state memory is very small.
The state memory can be seen as a state ‘vector’, indexed by the
task_id return value of the GetTask primitive. In hardware, this
is typically implemented as SRAM or a register file, where the
most significant address bits are controlled by the task ID.

3.2.4 State Save Through a Single-Access Buffer
Compared to dedicated state memory inside the coprocessor, sav-
ing/restoring task state to shared memory outside the coprocessor
is more efficient when the size of the task state is considerable.
This allows reuse of the memory for other purposes when the

maximum number of tasks is not actually configured, as well as
allowing more tasks to execute on the coprocessor by allocating a
larger state buffer in software. An example where this is applica-
ble is in multi-standard variable-length decoding, where the vari-
able length coding tables may differ between tasks.
The coprocessor only contains local state memory to hold the state
for a single task, and generates reads and writes to replace this
state upon a task switch. As the Eclipse communication network
provides low-latency data access, these reads and writes pass
through the same data path and memory as used for the media
traffic. Each task is assigned a dedicated state buffer in shared
memory that is not shared by others. Therefore, the coprocessor
issues a sequence of Read and Write calls for state saving with-
out requiring synchronization, i.e. without calling GetSpace or
PutSpace on this stream. Note that the coprocessor only knows
whether it needs to switch tasks after GetTask returns with a new
task ID. Therefore, the Write calls pass the previous task ID in
their first argument to refer to the state buffer of the previous task
for saving the state of that task.

3.3 Pipelining
Depending on application requirements, the coprocessor may
need to be pipelined. For example, suppose the function provided
by the coprocessor is a 2-dimensional DCT as needed for MPEG
video compression and decompression, requiring a single input
stream and a single output stream. Suppose further that reading an
input packet takes about 30 clock cycles, and also writing an out-
put packet takes 30 cycles, while only 50 cycles of total compute
time are available (e.g. for simultaneous decoding of two HD
MPEG-2 streams at 150 MHz). In such cases, it is worthwhile
considering whether the coprocessor can be designed in a pipe-
lined fashion, such that the input stage can operate concurrently to
the compute and output stages. As long as the stages are not con-
strained by available communication bandwidth to the shell, this
provides a viable option.

6WDJH��
,QSXW

3DUDOOHO�WR�VHULDO��S�V�

6KHOO

*HW7DVN *HW6SDFH 3XW6SDFH5HDG :ULWH

6WDJH��
2XWSXW

6WDJH��
&RPSXWH

3LSHOLQHG�FRSURFHVVRU

*
HW
6
SD
FH
�

5
HD
G�

3
XW
6
SD
FH
�

*
HW
6
SD
FH
�

:
ULW
H�

3
XW
6
SD
FH
�

Figure 6. Pipelined coprocessor example.
The design of a pipelined coprocessor can be approached as ex-
emplified in Figure 6. In general, a pipelined coprocessor consists
of N stages, each with its own thread of control. In contrast to
pipelined processor architectures, the coprocessor stages may
need communication with the shell, which introduces irregular
and unpredictable behavior. In tightly interlocked pipeline de-
signs, an unexpected delay in one stage incurs stalling of most or
even all other pipeline stages. In the current setting, this could
lead to unacceptable performance loss. Thus, pipeline stages of an

Eclipse coprocessor must be loosely coupled. In turn, this means
that the local buffers needed to decouple the stages can be larger
than one single hand-off. A nicely fitting solution for the loose
couplings is to use a circular buffer, with a dedicated FIFO inter-
face, similar to the GetSpace, Read, and Write interfaces. A
PutSpace like interface to this local FIFO is unnecessary as the
Read and Write calls can commit the data immediately.
The p2s block serializes the calls of different stages to the shell.
The interfaces between the processing stages on the one hand and
the p2s block on the other hand are similar to the shell interface,
but are specific per stage. This allows the p2s block to maintain
functional correctness when different stages access the same
stream. For instance, an input stage may call GetSpace on an
output channel to find out availability for output of a later stage,
in order to decide up front on aborting the task or not (Section
3.2.2). However, the input stage generally has no notion of how
many bytes of output are progressing through the pipeline, espe-
cially in (de)compression contexts. Thus, abortion of a task can
only be decided in output stages. To avoid building up task state
that may need to be saved upon abortion, all PutSpace calls must
be the responsibility of the final stages.
Thus, the output stage also issues the PutSpace calls to commit
the GetSpace and Read calls of an earlier input stage. These
PutSpace calls of the output stage advance the point of access of
the GetSpace and Read calls in the input stage. As the input and
output stages operate concurrently on the same stream, the co-
processor needs to address the ordering constraints of these calls
to preserve functional correctness. Furthermore, all stages need to
be able to abort processing on further packets of the same task
when a GetSpace request fails, if necessary by replacing active
data by bubbles in the pipeline of tightly coupled stages.

4. RESULTS
The Eclipse architecture is implemented in a flexible cycle-
accurate simulator. This includes simulation models of a set of
multi-tasking coprocessors for high-definition MPEG-2 decoding.
The simulator supports detailed performance measurements and
design-space exploration. Currently, detailed design of a first
Eclipse instance is in progress.

5. RELATED WORK
The Eclipse computation model is based on Kahn Process Net-
works [4], in which parallel tasks communicate through ‘read’
and ‘write’ primitives via unbounded FIFO channels. Designs that
adopt this model implicitly synchronize on each read or write
action [6]. However, Eclipse advocates the separation of data
access and synchronization. Kahn-style communication may suf-
fice for software tasks, but the separation of transport and syn-
chronization is mandatory for designing cost-effective hardware
tasks, e.g. to reduce buffer requirements and avoid state-saving
hardware.
As seen from the coprocessor viewpoint, the Eclipse primitives
show many similarities with the C-HEAP protocol [7]. Eclipse
supports variable-length data packets in contrast to C-HEAP,
where the token size of a channel is fixed during system configu-
ration. Moreover, a key innovation of Eclipse with respect to ear-
lier publications is the deployment of multi-tasking coprocessors
using the GetTask primitive and task scheduling in the coproces-
sor shell.

6. CONCLUSION
Eclipse introduces a flexible and scalable subsystem for media-
processing SoC platforms. The interface as defined in this paper
separates computation (coprocessors) from generic infrastructure
aspects to facilitate reuse of coprocessors over different architec-
ture instances. The generic infrastructure offers multi-tasking,
synchronization, and data transport services to the coprocessors in
the form of five interface primitives. These interface primitives
relieve the coprocessor designer from addressing cumbersome
system-level issues. However, the uniform interface does not in-
hibit the design of highly cost-effective coprocessors with com-
plex control to handle variable-length data packets, data-
dependent I/O, state save and restore, and pipelining.
Although developed for Eclipse, the five interface primitives are
broadly applicable in multiprocessor solutions for the media-
processing domain, both in software and in hardware. Moving
into the realm of networks on silicon, such an interface will be a
key element in providing a structured approach for building com-
plex SoCs.

ACKNOWLEDGEMENT
The authors are grateful to Om Prakash Gangwal and Pieter van
der Wolf for their contribution to the Eclipse architecture and
coprocessor design as well as for their thorough review of this
paper.

REFERENCES
[1] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A Multi-

processor SOC for Advanced Set-Top Box and Digital TV
Systems”, IEEE Design and Test of Computers, pp. 21-31,
Sept-Oct. 2001.

[2] W. Lee and C. Basoglu, “MPEG-2 Decoder Implementation
on MAP-CA Mediaprocessor using the C Language”, Proc.
of the SPIE: Media Processors 2000, 3970, Jan. 2000.

[3] M.J. Rutten et al., “Eclipse: Heterogeneous Multiprocessor
Architecture for Flexible Media Processing”, Workshop on
Parallel and Distributed Computing in Image Processing,
Video Processing, and Multimedia (PDIVM), April 2002,
Fort Lauderdale, Florida, USA.

[4] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming”, Proc. of Information Processing ‘74, North-
Holland publ. Co., pp. 471-475, 1974.

[5] M.J. Rutten, Jos T.J. van Eijndhoven, and Evert-Jan D. Pol,
“Robust media processing in a flexible and cost-effective
network of multi-tasking coprocessors”, Euromicro Conf. on
Real-Time Systems, June 2002, Vienna, Austria.

[6] S. Vercauteren, B. Lin, and H. de Man, “Constructing Appli-
cation-Specific Heterogeneous Embedded Architectures for
Custom HW/SW Applications”, 33rd Design Automation
Conf. (DAC), pp. 521-526, June 1996, Las Vegas, Nevada,
USA.

[7] O. P. Gangwal, A. Nieuwland, and P. Lippens, “A Scalable
and Flexible Data Synchronization Scheme for Embedded
HW-SW Shared-Memory Systems”, Int. Symp. on System
Synthesis (ISSS), pp. 1-6, Oct. 2001, Montréal, Canada.

	INTRODUCTION
	ECLIPSE ARCHITECTURE
	COPROCESSOR CONTROL
	Synchronization and Data Transport
	Granularity of Synchronization
	Random Access
	In-Place Updates

	Task Switching
	Busy Wait
	Discarding Partial Work
	State Save in Internal Coprocessor Memory
	State Save Through a Single-Access Buffer

	Pipelining

	RESULTS
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

