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Combining code motion and scheduling
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Abstract— This work addresses a resource-
constrained optimization problem which arises in
the context of the high-level synthesis of an ASIC
or in the code generation for an ASIP. For a given
behavioral description containing conditional con-
structs, scheduling and code motion are combined
and encoded in the form of a unified optimization
problem. As taking code motion into account may
lead to a larger search space, a code-motion prun-
ing technique has been developed. Optimal solu-
tions are kept in the search space and a local-search
method is used to seek for potential solutions. We
show that our technique can cope with issues like
speculative execution and code duplication. More-
over, it can be extended to tackle constraints im-
posed by the advance choice of a controller, such as
pipelined-control delay and limited branch capabil-
ities. For all cases tested so far, our experimental
results have reached the best published results.
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scheduling, code motion, speculative execution

I. INTRODUCTION

CHEDULING is an important problem in the con-

text of high-level synthesis of digital systems and
in the domain of code-generation for embedded pro-
cessors. Scheduling is control-dependent when the be-
havioral description has conditionals and loops [1].

A straightforward way of addressing control-
dependent scheduling is by applying classical schedul-
ing techniques to all operations which execute under
the same condition, the so-called basic-block (BB).

As such a local approach may lead to poor quality
results for control-flow dominated designs, operations
can be moved up and down after BB scheduling [2].

Other approaches have focused on scheduling oper-
ations directly across BB boundaries [4], [3], [5], [6],
[7]. However, an optimal solution might be missed
either due to the applied heuristics [3], [5], [6], [7] or
due to a fixed order chosen in advance [4].

A symbolic technique was presented to cope with
control-dependent scheduling [1]. Instead of gener-
ating a single representative solution (like the men-
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tioned methods), the technique encapsulates all fea-
sible schedules in a BDD form. However, this exact
method is unlikely to be used in early (more iterative)
phases of a design flow.

We have been developing a method where several
representative solutions are generated by a solution
constructor and are explored by a local-search algo-
rithm [9]. The basic idea is to keep at least one opti-
mal solution in the search space when advanced issues
like code motion and speculative execution are taken
into account. With high-quality solutions kept in the
search space and by using a local-search approach, one
can tradeoff accuracy and search time. As code mo-
tion may lead to a larger search space, a code-motion
pruning technique is used to reduce search time.

In this paper we will focus on the techniques to
support the improved execution model (code mo-
tion, speculative execution, effects due to the advance
choice of a controller). In order to make the paper
self-contained, we revisit in section II the formulation
presented in [9] and we give an outline of the approach
in section ITI. Section IV presents the support for the
improved execution model. In section V we emphasize
on the idea of code-motion pruning. Finally, experi-
mental results are shown in section VI.

II. PROBLEM FORMULATION AND
REPRESENTATION

Optimization problem: Given a number K of func-
tional units and an acyclic control data flow graph,
find a control sequence represented by a state ma-
chine graph, in which precedence constraints are sat-
isfied for each functional unit type, such that a cost
function C'is minimized.

Definition 1: A control data flow graph DFG = (U,
E) is a directed graph where the nodes represent op-
erations and the edges represent their dependencies.

Definition 2: A guard gy, is a boolean variable asso-
ciated with the control-flow decision of a conditional
Ck [1]

Definition 3: A predicate is a boolean function on
the set of guard variables.

Definition 4: A basic block control flow graph BBCG
= (V, F) is a directed graph where the nodes represent



BBs and the edges represent the flow of control. An
operation initially associated with a given BB may
move to another BB; this is called code motion.
Definition 5: Each path in the BBCG defines a se-
quence of BBs which enclose a set of operations of the
DFG. This set is called an ezecution instance (EXI).

III. THE CONSTRUCTIVE APPROACH

Figure 1 shows an outline of our approach. Solu-
tions are encoded by a permutation II of the opera-
tions in the DFG. A solution ezplorer handles encoded
solutions and uses a permutation-driven solution con-
structor to evaluate their cost. The explorer is based
on a local search algorithm [11]. Conditional execu-
tion is modeled by means of boolean functions and
queries about whether operations execute under the
same conditions are directed to a so-called boolean or-
acle (the term was coined in [10]) which allows us to
abstract from the way the queries are implemented.

explorer

11 cost

constructor

bool
oracle

Fig. 1. An outline of the approach.

A. Requirements of a solution

Due to the presence of conditionals in a description,
different execution instances are possible, as condi-
tional decisions are data-dependent. A solution is said
to be complete only if a valid schedule exists for every
possible execution instance.

Since conditional resource sharing is affected by the
timely availability of test results, a solution is said to
be causal when the result of a test is not used before
the time when it is available.

B. Criterion of optimality

We call solution space the set of all feasible solu-
tions. Depending on the scheduling method, not all
solutions in the solution space might be reachable.
We call search space the set of all solutions that can
potentially be generated by a given method.

Even though our method can not ensure that an
optimal solution will always be reached as a conse-
quence of the local-search formulation, we claim that
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at least one optimal solution is in the search space for
all cost functions which are monotonically increasing
in terms of schedule lengths [9].

IV. SUPPORT FOR CONTROL-DEPENDENT
SCHEDULING

A. Initial links

In order to capture the freedom for code motions
we introduce the notion of a link. A link connects an
operation u in the DFG with a BB v in the BBCG.
Its interpretation is that 4 may be executed under the
predicate which defines the execution of operations in
v. One operation can be linked to several mutually
exclusive BBs. Figure 2 illustrates the link concept.

Fig. 2. Links, paths and execution instances

We encode the freedom for code motion by using
a set of initial links (see [9] for an explanation on
how they are obtained). In figure 2 some initial links
are shown, but others are omitted for clarity: a is
initially linked to both BB2 and BB3 and b only to
BB3. Each link points to the latest BB in a given path
where the respective operation can still be executed.
This means that each operation is free to be executed
inside any preceding BB on the same path as soon as
data precedence and resource constraints allow (the
only control dependency to be satisfied is the need
to execute the operation at the latest inside the BB
pointed by the initial link). The underlying idea is
to traverse the BBCG in topological order trying to
schedule operations in traversed BBs. If operation u
is given an initial link to BB v and v is reached in the
traversal, then u must be scheduled inside it. We say
that the assignment of 4 to BB v is then compulsory.

B. Modeling conditional execution

We use predicates to model conditional execution of
operations. They are used as attributes of the objects
manipulated in our method.

Based on the timely availability of the result of a
conditional, we will make a distinction on the predi-
cates. A conditional is said to be resolved at a given



time step if its result is available to influence execu-
tion at that step. A predicate is said to be static and
will be labeled as G when it represents the execution
condition of an operation when all conditionals are
assumed as being resolved. A dynamic predicate is
labeled as I' and represents the execution condition
of an operation when some conditionals may not be
resolved at a given time step.

C. Support for code motion and speculative execution

When each operation is executed inside the BB to
which it was initially linked, all conditionals are re-
solved prior to the operations whose execution condi-
tion they affect, as a consequence of the BBCG struc-
ture. Hence, static predicates represent their execu-
tion.

Assume, however, that an operation will move from
one BB to another. Let Gja be its predicate
prior to code motion. Assume that the operation is
scheduled into another BB where a different predicate
G eurrent holds. The static predicate after code motion
is given by the product: G = Gipitial-Geurrent-

As code motion may lead to speculative execution,
G does not represent anymore the effective execution
condition and I'" is computed by smoothing all guards
whose respective conditionals are unresolved.

Algorithm 1
dynamicPredicate(G, step, slot)
r=Gg
foreach gy € support(T)
if end(cy) + slot > step
I’ = smooth(T, gi)

D. Support for pipelined-control delay

When the target controller is pipelined, the result
of a conditional may not be available but after a given
delay [14]. As a consequence, the conditional is un-
resolved within a time slot after its completion. This
effect is considered when evaluating the dynamic pred-
icate, as shown in algorithm 1, where end(c;) stands
for the completion time of conditional ¢

Figure 3 illustrates the effect of pipelined-control
delay. Conditional ¢y is associated with guard g, and
the conditional associated with guard g; is considered
resolved. A 2-cycle pipelined-control delay is assumed
and a single adder is available. In figure 3b the static
and dynamic predicates are shown. Only operations
d and e can conditionally share the adder. Note also
that operations in grey are speculative executed with
respect to conditional cs.
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Fig. 3. Effect of pipelined-control delay

E. Limited branch capability

When simple controllers are targeted (e.g. for the
sake of retargetable microcode), state transitions in
the underlying FSM are limited by the branch capa-
bility of the chosen controller.

T = [a,b,i,j,k1,mn,c.c,)
G = 0
G =0

G =0
Gj=gl

G.=1 Gn=gi
=1 szgé

Fig. 4. Effect of limited branch capability

Figure 4 illustrates the problem. In figure 4a we
show a permutation II and the static predicates for the
operations in the example. Two different schedules
are presented in figures 4b and 4c (1 comparator, 1
“white” resource and 1 “grey” resource). In figure 4c,
n' and n” represent the duplication of operation n.

The schedule in figure 4b implicitly assume a 4-
way branch capability, as shown by the state machine
graph. For the same II, if we delay the execution of
conditional ¢y of one cycle , we will obtain the schedule
in figure 4c, which requires only 2-way branch capa-
bility. However, this schedule needs an extra cycle.

As suggested by the example, our method can han-
dle limited branch capabilities during solution con-
struction. If the controller limits the branch capabil-
ity to a value k, where k = 2", the constructor will



allow at most n conditionals at the same step. This
is similar to the technique presented in [14].

Our treatment for controller-imposed constraints
exempts a further rescheduling (like in [15]) into the
target controller.

F. Conditional resource sharing

During solution construction, we need to check if
two operations can share a same resource under dif-
ferent execution conditions. Let 7 and j denote two
operations. These operations can share a resource at
a given step only when the identity I';I'; = 0 holds.

V. AN OUTLINE OF THE METHOD

The algorithm of our solution constructor is sum-
marized in [9], where an illustrative example can also
be found. We present here a brief overview and we
emphasize on the idea of code-motion pruning.

A. The topological-sorted scheduler engine

The solution constructor takes a permutation I and
generates a solution. Techniques borrowed from the
so-called constructive topological sorted scheduler [12]
are used, because it has the important property that
there always exists a permutation which results in an
optimal solution. A schedule is constructed out of a
permutation as follows. An operation to be scheduled
is selected among ready operations (unscheduled oper-
ations whose predecessors are all scheduled) following
the order in the permutation. Each selected opera-
tion is attempted to be scheduled at the as early as
possible time where a free resource is available. Our
constructor obeys the criterion below:

Criterion 1: All operations which may execute un-
der the predicate G of a BB are scheduled by following
the principle of topological-sorted construction.

Note that any ready operation under predicate G
may be scheduled at the given BB, even if does not
belong to it.

B. Traversing the BBCG

The solution constructor follows the flow of tokens
in the DFG while the BBCG is traversed in topo-
logical order. An operation can be assigned to any
traversed BB, as soon as data dependencies and re-
source constraints allow. If more than one operation
satisfies these constraints, an operation will be chosen
based on the order in the permutation. Such an as-
signment is not compulsory as long as the BB to which
the operation was initially linked is not reached. As
a result, an initial link ¥ — v might become a final
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assignment, but it will be revoked if u succeeds to be
scheduled inside any ancestor of v, inducing a code
motion.

C. Splitting the linear-time sequence

Our constructor uses a criterion to split the linear-
time sequence in order to expose a flow of control:

Criterion 2: Let o be an operation which is ready
under the predicate G of a BB 4, but whose assign-
ment to ¢ is not compulsory. If the schedule of o
inside BB 4 would require the allocation of exactly
0 = [delay(o)] time steps, then operation o is not
allowed to be scheduled in BB .

We claim that criterion 2 does not discard any bet-
ter solution (see proof in [9]).

D. The underlying code-motion pruning

We will show here how the application of criterion
2 represents a code-motion pruning. From an original
solution S,,, induced by a permutation II, we will try
to construct a better solution S,, for the same II.
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Fig. 5. The idea of code-motion pruning

In figure 5, operations a; to a4 are additions, s; to
s3 are subtractions and m; is a multiplication (assume
one resource of each type). A grey field in the utiliza-
tion vector (MUV) means either that a resource was



occupied by some other operation or was not occupied
due to a data dependency.

In figure 5a we show a solution S,,, generated by
our constructor. This means that S,, was generated
following both criteria 1 and 2. For example, oper-
ation m1 was not scheduled inside BB p, because it
must have been recognized as non-compulsory in p.
Also, empty fields in S, mean that other operations
could not be scheduled in the idle modules due to data
dependencies. We will show that if m, was allowed to
boost into BB p, no better result would be reached.

In figure 5b, we start to construct a new solution Sy,
where m1 is boosted into BB p and it allocates exactly
0 = 3 steps. This will make room for operations from
other BBs to move up. We will consider two different
scenarios for code motion.

In a first hypothesis, we assume that no operation
in BB 7 can be scheduled in the allocated steps,but
operations in BB ¢ and BB s may move up. In figure
5c, the boosted operations cause BBs g and s to shrink
by the same number ¢§ of steps allocated in BB p.

Figure 5d illustrates a second hypothesis. We as-
sume that operation a4 can move up from BB r into
the allocated steps. As a consequence, a8 could not
be moved into BB p. Besides, s can not be scheduled
at the same step with a4, because this was not possi-
ble in the original solution Sy, what means that the
topological-sorted engine must have detected a data
dependency between them. As a result, s stays in
BB s and path p —+ s — r can not be shortened.

Note that in figures 5¢ and d, even though we have
optimistically assumed that the boosted operations
have completely freed the steps from which they have
moved, no better solution could be reached.

The underlying idea illustrate here is that, instead
of allowing any arbitrary code motions generated by
the permutation-driven scheduler engine, we only al-
low those which obey criterion 2. This leads to the
notion of code-motion pruning. As the application of
criterion 2 do not prune any better solutions and the
application of criterion 1 guarantees that at least one
permutation returns the optimal schedule length, we
conclude that this code-motion pruning keeps at least
one optimal solution in the search space.

E. Causality and completeness by construction

In path-based approaches [4], completeness is guar-
anteed by finding a schedule for each control path and
overlapping them into a single-representative solution.
The method enumerates all control paths, whose num-
ber may grow exponentially in the number of condi-
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tionals. Causality is guaranteed by preventing an op-
eration from being executed prior to the respective
branch test, leading to a limitation of the execution
model, as speculative execution is not allowed. Be-
sides, the method may generate infeasible solutions
when constraints are imposed by the controller.
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Fig. 6. Causality by construction

The method in [1] has to accommodate the over-
head of a trace validation algorithm, required to en-
sure both completeness and causality. Traces are se-
lected such that they can co-exist, without any con-
flict, in a same executable solution.

In our method completeness is guaranteed by the
traversal of BBs, because all predicates G associated
with the BBs are traversed, which makes sure that all
possible execution conditions are covered (without the
need to enumerate paths). Causality is guaranteed by
the dynamic evaluation of predicates (see Algorithm
1) during the construction of each solution. To illus-
trate this fact, we will revisit an example from [1].

Figure 6b shows a solution for the DFG in 6a. A
resource of each type is assumed. The solution is com-
plete (both EXIs are scheduled) but it is not causal,
because it can not be decided whether o3 or o5/, 01 or
og» will be executed as conditional ¢; is unresolved at
the first step. Note that G,3G 5 = 0, but I'ysl,5 # 0;
and also that G,1Ggr = 0, but T'p1T'ygr # 0.

In figures 6¢ and d, two solutions were constructed
for different permutations. Operations o3 and o5 are
prevented to be scheduled at the same step (fig. 6¢),
as well as 01 and og (fig. 6d). Our dynamic evaluation
of predicates prevents the construction of non-causal



solutions (like in fig. 6b).

VL

The method has been implemented in the NEAT
System [13]. We have been using the BDD package
developed by Geert Janssen as boolean oracle and a
genetic algorithm as explorer. Search was performed
for several randomly chosen seeds. In the following
tables, CPU means the average search time in seconds,
using an HP9000/735 workstation.

EXPERIMENTAL RESULTS

TABLE 1
BENCHMARKS WITHOUT CONTROLLER CONSTRAINTS

kim maha parker
(a) (b) (a) (b)
add 2 1 2 1 2
sub 1 1 3 1 3
alu 0 0 0 0 0
cmp 1 - - - -
CPU 0.6 3.6 1.8 1.7 0.9
ours 6(5.75) | 5(3.31) | 4(2.25) | 5(3.31) | 4(2.00)
ST[1] 6(5.75) | 5(3.31) | 4(2.25) - 4(2.13)
TBS[5] - 5(3.31) - - -
CVLSJ[3] || 6(5.75) | 5(3.31) | 4(2.38) | 5(3.31) | 4(2.38)
HRA[3] 7(6.25) | 8(4.62) - - -
PBS[4] ; 5(-) _ : :
TABLE II

BENCHMARKS WITH PIPELINED-CONTROL DELAY

rotor
(@) | () | (© | (d)]|()] &[] ()
alu 1 2 3 4 1 2 3 4
mul 0 0 0 0 2 2 2 2
lat 12 7 7 6 10 8 8 8
CPU || 0433|0409 ]06]07]|0.1 0.1

alu: 1-cycle ALU; mul: 2-cycle pipel. multiplier
1 single-port look-up table; pip.-control delay = 2 cycles
speculative execution allowed

In table I we compare our results with other meth-
ods without constraints imposed by the controller. At
the top of the table we show the resource constraints
for each benchmark. Our results are shown at the
middle and results collected from other methods at
the bottom. For each result, the schedule length of the
longest control path is shown and the average schedule
length (assuming equal branch probabilities) is indi-
cated between parenthesis. Note that our method can
reach the best published results.

In table II we show our results for benchmarks
with pipelined-control delay. Our approach can reach
the same latencies obtained by the exact method in
[1]. Note that, even though our local-search method
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can not guarantee optimality, optimal solutions were
reached for all cases within competitive CPU times.

VII. CONCLUSIONS

These preliminary results suggest that our tech-
niques successfully support the improved execution
model when issues like code motion and speculative
execution are dealt with during scheduling. Besides,
they show that constraints imposed by the controller
can be tackled by the constructive approach. As fu-
ture work, the treatment for loops is to be addressed.
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