Proceedings of the 32nd DAC,
pp. 593-598, San Francisco (CA),
June 12-16, March 6-9, 1995.

Conflict M odelling and I nstruction Scheduling
in Code Generation for In-House DSP Cores

Adwin H. Timmer***, Marino T.J. Strik™, Jef L. van Meerbergen** and Jochen A.G. Jess'

*Eindhoven University of Technology, Department of Electrical Engineering,
Design Automation Section, PO. Box 513, 5600 MB Eindhoven, The Netherlands

**Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

Abstract

Application domain specific DSP cores are becoming increas-
ingly popular due to their advantageous trade—off between
flexibility and cost. However, existing code generation methods
are hampered by the combination of tight timing and resource
constraints, imposed by the throughput requirements of DSP
algorithms together with a fixed core architecture. In this paper,
we present a method to model resource and instruction set
conflicts uniformly and statically before scheduling. With the
model we exploit the combination of all possible constraints,
instead of being hampered by them. The approach results in an
exact and run time efficient method to solve the instruction
scheduling problem, whichisillustrated by real life examples.

1. Introduction

Predefined DSP cores which are tuned towards specific applica-
tion domains are becoming increasingly popular, due to their ad-
vantageous trade—off between flexibility and cost. Such acoreis
relatively flexiblein comparisonto an ASIC: different algorithms
can be mapped onit, whilean ASIC isatailored solution for only
one agorithm. On the other hand, domain specific DSP cores are
more targeted towards a specific application domain, making
them more suitable for such a domain than general processors:
dedicated hardwareisavailablefor timecritical tasks(e.g. amod-
uleperforming aFFT butterfly inasinglecycle). These coresalso
have an advantage over the combination of general purpose and
ASIC components, becausethereisno communication bottleneck
between different parts. Therefore anew research topic isemerg-
ing: 'retargetable’ code generation for domain specific DSP cores
and other application specificinstruction—set processors (A SIPs).

The size of the application domain of acoreisinversely propor-
tional to the required efficiency. Because of the relatively high
efficiency required, the use of domain specific DSP coresleadsto
new design tools and methods [Paul92]. Experiments show cases
in which the utilization of the operation processing units (OPUSs)
in the core exceeds 90% of the total cycle budget [Strik95]. So
thereisaneed for acode generator capabl e of generating very effi-

cient (compact) microcode under tight feasibility constraints.
With tight feasibility constraints we mean that both timing (from
the algorithm) and resource (from the DSP core and instruction
set) constraints are present. The combination of these constraints
resultsin high OPU utilization rates, whilethe only objectiveisto
find afeasible (correct) mapping from algorithm to DSP core.

2. Contributions of this paper

Code generation can roughly be divided into threeinterdependent
subtasks: code sel ection, instruction scheduling and register bind-
ing. Previous approaches concentrate on the code selection
problem [Marw93], [Liem94], [Praet94] or the register binding
problem [Cheng94], [Lann94]. However, under the regime of
tight feasibility constraints, many instances appear where heuris-
tic approaches for the instruction scheduling problem render un-
satisfactory results(i.e. they do not find afeasible schedulewithin
the throughput constraints although such schedules do exist).

The existing scheduling methods do not produce satisfactory
results because they are hampered by the combination of tight
timing and resource constrai ntsinstead of exploitingthem. Onone
hand, in thefield of software compilation, the compl etion time of
an algorithm is not that important in comparison with the hard
constraints on the throughput of DSP algorithms. An exceptionis
[Chou94], but in that approach the resulting schedule is fully
serial, so no paralelism in the datapath is possible (which is
needed in DSP applications). On the other hand, in the field of
hardware compilation, most architectural synthesis systems do
not treat hard resource constraints correctly (i.e. they often just
add resourcesin order to find a solution).

In this paper we will therefore concentrate on modelling resource
and instruction set conflicts and exploiting the combination of all
possible constraints, thus obtai ning an exact and runtime efficient
method to solvetheinstruction scheduling problem. Theexploita-
tion of the constraintsleadsto areduction of the scheduling search
spaceto a point where the sol ution space can be searched exhaus-
tively in many cases. The target cores we consider are in—house
DSP coresfor which the application domains arerelatively small
and the microcode efficiency must be high. As a consequence of
the use of in—house DSP cores, we can control the core architec-
tures and the corresponding instruction set definitions, so we can
adjust them to facilitate our code generation approach [Strik95].
The exact contributions of this paper are as follows.

» Insection 3, we show how different resource constraints (with
respect to OPUs, memory accesses, buses and multiplexers) can
be modelled uniformly. Because in our case the instruction set

cannot steer al modules in the datapath simultaneously, the
instruction set imposes additional restrictions on the amount of
parallelismin the datapath. A method has been devel oped, so that
these restrictions can be handled as if they are normal resource
conflicts. This means amongst others that the instruction set
conflicts are modelled statically before scheduling, thus making
a compaction pass, used in other code generation systems like
CodeSyn [Paul94], superfluous. Note that register file size
constraints are not yet dealt with in the approach presented here.
Thisisstill atopic of further research.

* In section 4, we cast the different resource conflicts to a
bi partite graph matching formulation. Theformulation prunesthe
scheduling search space in polynomial time without limiting the
solution space by exploiting combinations of resource and timing
constraints. The method is based on the execution interva
analysis of [Timm93], but is completely changed for our code
generation. Because of the large number and the tightness of the
different resource constraints, the approach is highly suitable for
the retargetabl e code generation problem.

* Insection 5, we propose an exact branch—and-bound method
to solve the instruction scheduling problem. The approach
searches for a correct ordering of the operations (from which a
schedule can be derived in linear time), instead of directly
generating exact time bounds for each operation. In section 6,
resultsfor real life examples show the efficiency of the approach.

3. Resource and instruction set conflicts
3.1. Register transfer generation

Preceding theinstruction scheduling step, register transfers (RTs)
and their dependencies are generated from an algorithmic input
description using ageneric architectural model, seefigure 1. That
figure shows a number of (possibly pipelined) OPUs. Each OPU
input is connected with a register file (RF). The outputs of the
OPUs are connected to RFs via buffers, buses and (optionally)
multiplexers. RTs correspond to a complete (in this case single
clock cycle) path from origin register filesto adestination register
file. Sothe RTsa ready contain the binding information on which
resources actions from the input description are mapped. RTs are
fully characterized by the resourcesthat are used and themodein

1
H i
OPU =

OPU OPU OPU

—r

mxo
o

Figurel: Generic datapath architecture.

Dest _1: reg_2 ram_1<-Source_1:reg_1 acu_l1,
Source_2:reg_2_acu_1,

acu_1 = add,

buf_1 acu_1 = write,

bus_1 acu_1 =’add(Source_1,Source_2)’,
mux_2_ram_1= pass[O0, 1].

Figure2: Exampleregister transfer.

which these resources have to operate. An example is given in
figure 2. The resources are found at the left hand side of the ‘=’
sign and the mode (or usage) is positioned at the right hand side.
Figure 2 shows an addition on an OPU called 'acu_1' and the
storage of theresultinaregister of theOPU called’ram_1' viaone
of the two available multiplexer inputs.

The RT generation step has equivalences to the instruction—set
matching and selection techniques of other approaches like
[Liem94]. However, in our case this step is done by an existing
(architectural synthesis) RT generation tool from the Mistral 2T
compiler [Nieu94]. The tool uses the architectural model of
figure 1 as a starting point. Register files and busses that are
merged in the actual core are taken into account by modifying the
generated RTs [Strik95].

3.2. Resour ce conflicts

RTscan only be combined into asingleinstruction by ascheduler
if there are no resource conflicts. If RTs do not use the same
resources, then they can be combined. Otherwiseit dependsonthe
usage of theseresources. At theleft of figure 3, an RT isgiventhat
can be combined with the RT of figure 2: the usage of the shared
resourcesisthe same. Theonly difference between thetwo RTsis
the destination RF (see the resources in bold in figure 3). At the
right of figure 3, an RT has been given that cannot be packed into
thesameinstruction asthe RT of figure 2. The OPU isused differ-
ently (seethe usagein bold in figure 3), which leadsto aconflict.

All possible conflicts due to the resources can be modelled with
thefollowing overall conflict graph (OCG), whichwill beused by
the graph matching formulation we introduce in section 4.

Definition 1
OCG isan undirected graph represented by atuple (V, E), where:
eV isthe set of vertices representing all RTSs;
« E CV x Vistheset of edges;
thereisanedge(vj, vj) L Eif and only if thereis someresource
that both v; 0V and vj 0V use, but in a different mode.

The OCG points out that the resource conflicts are modelled
statically before scheduling. Two RTs can be packed into one
instruction if they are not adjacent to each other inthe OCG (and,
of course, if dependency relations between RTs are not violated).
For all OCG cliques only one RT at the time can be packed into
one instruction. So solving the resource conflicts of a design
problem can be interpreted as finding different independent sets
of RTsfor every instruction (or clock cycle) that do not violatethe
dependency relations between RTs.

Dest_1:reg_2 acu_1<- Source_1:reg_1 acu_1,
Source_2:reg_2 acu_1,

acu_1 = add,

buf_1 acu_1 = write,

bus_1 acu_1 = 'add(Source_1, Source_2)’,
mux_1 acu_1 = pass[O0, 1].

Dest 1:reg_2 ram_1<— Source_1:reg_1 acu_1,
Source_2:reg_2_acu_1,

acu_1 = addmod,

buf_1 acu_1 = write,

bus_1 acu_1 = 'add(Source_1, Source_2),
mux_2_ram_1 = pass|[O0, 1].

Figure 3:

3.3. Instruction set conflicts

A given DSP coreisnot only specified by its datapath but also by
itsinstruction set. In our case the instruction set cannot steer all
modules in the datapath simultaneously, so it imposes additional
restrictions on the amount of parallelism in the datapath. For
example load immediate is often a separate instruction class (or
"optype’) during which no other operations can take place.

In our approach these restrictions are modelled by adding extra
edges to the OCG defined in the previous subsection [Strik95].
Thereishowever acatchintheapproach. The previoussubsection
showed that the resource conflictsfrom the datapath are modelled
statically before scheduling by the OCG. The matching formula-
tion we introduce in section 4 uses the OCG and the conflicts
modelled by it. Sothe question ariseswhether such astatic model -
ling of the instruction set conflicts imposes any restrictions or
demands on the instruction set definition itself. (Recall that we
consider in-house DSP cores, so we can control the definition of
the instruction sets to make them suitable for code generation.)

Modelling the instruction set conflicts by additional edgesin the
OCGisonly valid, if theresult isthat every arbitrary independent
set of RTsfromthe OCG alwayscorrespondsto alegal instruction.
This means amongst others that the NOP (no operation) must be
apossible instruction, as well as each individual RT class on its
own. So modelling theinstruction set conflictsby additional OCG
edges puts some special demands on the definition of the instruc-
tionsets, seea so[Strik95]. However, thesedemandsarevery well
acceptable in real life situations and have no influence on the
efficiency of the implementation.

4. Bipartite graph matching formulation

4.1. Background

The quality of the result and the run times of (exact) scheduling
approaches heavily depend on powerful pruning techniques. An
important deviceto support pruning isthe operation execution in-
terval (OEI). An OEIl constrainstheinterval of clock cyclesto be
assigned to an RT in any schedule. If resource constraints are not
considered, then an OEI isgiven by the ASAP and ALAP cycles
of the RT under the assumption of unlimited resources. Recent
research [Timm93] showed, that the search space of schedulers
that are both resource and time constrained can be pruned consid-
erably by reducing the OEls. That (polynomial runtime) approach
isbased on agraph matching formul ation expl oiting both resource
and time constraints and does not exclude any possible schedule.

RTswithout (left) and with (right) a conflict with the RT of figure 2.

Becauseof thelargenumber andtightnessof thedifferent resource
and instruction set constraints, such a pruning approach ishighly
suitable for the retargetable code generation problem. We there-
fore apply asimilar analysis based on bipartite graph matching to
map algorithmsto DSP cores. However, arigorous adaptation of
the standard approach is needed to make it suitable for our code
generation, due to the following reasons.

e Originaly only resource constraints with respect to OPUs
were taken into account. The technique is extended for all other
resource types that are part of an RT, i.e. constraints with respect
to memory accesses, buses, multiplexers and the instruction set
are also considered.

* Inmany cases, theloopsin asignal flow graph (SFG) haveto
be’folded’ (see section 4.3) to satisfy the throughput constraints.
Cyclic signal flow graphs were not considered in [Timm93], and
loop folding also results in extra timing constraints for the RTs
because the consumption of a value must occur before a new
version of the value is produced.

* Ingeneral the number of times a certain resource is occupied
is not known beforehand in the RT model we use. If two RTsdo
not have any resource conflicts although they do use the same
resources (i.e. they use resources in the same mode), then it
depends on the final schedule whether these resources are used
once or twice for the two RTs.

4.2. Module execution intervals

The considerations mentioned above have a large impact on the
calculation of the so called module execution intervals (MEIS),
which account for theresource (or instruction set) conflicts. MEIs
can be calculated for each resource separately and are part of the
bipartite graph matching formulation. Within theinterval of each
MEI, the corresponding resource has to be occupied by some RT
(so the numbers of OEls and MEIs for each resource are equal).
Consequently, if the number of cycles of aMEI is equal to one,
then the resource must be utilized in that cycle.

For reasons of simplicity, in the above the MEIs were said to be
calculated for each resource separately. However, because in
general the number of times a certain resource is occupied is not
known beforehand (see the previous subsection), it is very
cumbersome and difficult to calculate the MEIs per separate
resource, see[Timm95b]. For the samereason, such acalculation
will inevitably be less accurate than the original approach of
[Timm93]. As the objective of the matching formulation we
present inthissectionisto model the combination of resource and
timing conflicts between different RTs as accurately as possible,
theformul ationwould not be aspowerful astheoriginal approach.

Luckily it is possible to overcome these problems, namely by
calculating the MEls differently (i.e. not per separate resource).
Every clique of RTs from the OCG represents RTs that have
resource conflicts with each other. It is possible to construct a
clique cover such that all edgesin the OCG areinduced (at |east)
once by a clique of RTs from the clique cover. MEIs can now be
calculated for each clique from such a cover, leading to a more
accurate, more powerful and much simpler approach than an
approach in which MEls are calculated per resource [Timm95h].
Note that a clique from the OCG can incorporate resource
conflicts from different resources, the MEIls are therefore not
calculated for each individual resource anymore.

4.3. Definition and calculation of MEls

Theschedule of aSFG can bedividedinto apreamble, aloop body
and apostamble. RTs are scheduled for thefirst timein either the
preamble or theloop body. In our case, thedelay of each RT isone
clock cycle. The throughput of a schedule is given by the data
introduction interval (dii), so the execution of an RT is repeated
every dii cycles. The schedule of an RT istherefore fully defined
by thefirst clock cycleinwhichitisexecuted together with thedii.
The schedule of each RT corresponds to the occupation of
resources during one time potential (i.e. 'a specific instruction
cyclethat returnsevery dii cycles’) intheloop body. The number
of timesa SFG is’'folded’ depends on the latency. If the latency
equals the dii, then the SFG is not folded. If the latency is twice
the dii, then the SFG is folded once, if the latency is three times
the dii, then the SFG isfolded twice, etcetera.

Resource conflicts occur when two RTs are schedul ed at the same
time potential in theloop body, while they use the same resource
inadifferent mode. Consider acliquefromthe OCG cliquecover.
Let V' bethe set of RTsin that clique, let ® be the set of feasible
(i.e. cgrrect) schedules, andlet o(v) bethetimepotential at which
v [0V isscheduled in case of someschedule@ [®. A schedule @
imposes a notion of order on the set V' by ordering the set
according to the time potentials, see definition 2. Note that two
scheduled RTsfrom an OCG clique cannot have equal potentials.

Definition 2: Given some schedule @ [J ®, we define <y asa
linear ordering relation on the set V' as follows:

YV V :v<,weo,(v) < o,(w).
GEC ywev' ¢ ¢() ¢()

As <(pisalinea(orderingitcanbeusedtoassignanintegervalue
ignL1=[1 V] toany v OV . We capture this by defining a
bijective function gy | - V'. Thus gqli) isthe ith RT under the
linear order induced by the schedule ¢. We are now prepared to
formally introduce the notion of aMEI.

Definition 3: Consider the set of RTsfrom V' assigned valuei [|
over theset of all schedules®. Thenthemoduleexecutioninterval
MEI (i) is defined by the following interval of time potentials:

MEI() = [ﬂ'},(%(%(i)))' ¢”;a£((°¢(8¢(i)))]'

Thus, for any schedule 0 ®, thetime potential of theit" RT from
V' must bewithintheinterval of time potentialsof MEI(i). Unfor-
tunately, itisnot possibleto cal cul atetheexact boundsof theM El's
inpolynomial time (otherwisethe existence of afeasible schedule
under given time and resource constraints could be decided in
polynomial time). So we have to be content with (conservative)
estimates of those bounds which preserve the integrity of the
solution space, see property 1.

Property 1:

The estimates of the first time potential, first((MEI), and the last

time potential, last(MEI), of aMEI have to satisfy the following.
V Vo oy(eg(i)) = first(MEI()) A 0,(e(i)) < last(MEI(i))

peEDIiEI

Let FTP(v) be the first time potential in which register transfer
v OV’ can be scheduled, let the set V' be ordered by increasing
FTP (if two RTs have the same FTP then thistie is broken in an
arbitrary way), and let VV'(i), i O 1, betheith RT in that order. If
MElsarecal culated per OCG clique, then thefollowing two prop-
erties hold (note that property 3 does not hold in case MEls are
calculated per separate resource).

Property 2: Start of MEI(i) cannot be smaller than the ith FTP,
_‘v’I first(MEI(G)) = FTP(V(i)).
I E

Property 3: At each time potential, at most one MEI can start.
v Airst(MEIG) = first(MEI(i-1)) + 1.

2<i< |V

Theorem 1: Algorithm 1 calculates (estimates) for all MEI(i),
i 01, thevaluefirst(MEI(i)) while satisfying property 1. The last
time potentials of the MEIs can be determined similarly.

Proof. The proof follows directly from property 2 and 3. [

Algorithm 1: calculate/ estimate first time potentials of MEls.
first(MEI(1)) := FTP(V' (1));
for (i:=2to|V'|) —

first(MEI(i)) := max {FTP(V'(i)), first(MEI (i — 1)) + 1};

4.4, Bipartite schedule graphs

With the calculated MElISs, all resource / instruction set conflicts
can be cast to bipartite schedule graphs (BSGs). In the following
definitionthese BSGsincorporating both RTsand MElsaregiven.

Definition 4: The bipartite schedule graph BSG(V') for OCG

clique V' under the given timing and resource constraints is an

undirected bipartite graph represented by atuple (N, A), where:

+ N=V UR istheset of verticeswith V'nR =0, [V'|=|R],
andR ={MEI() |1 <i < |V'[};

+ AC V xR isthe set of edges; initialy there is an edge
(v,n) DAifandonlyif vV’ canbescheduledintheinterval
of time potentials of module execution interval n OR'.

For each feasible schedule a corresponding complete matching
exists (but not all complete matchings represent feasible
schedules). The OElsof the RTs can bereduced by identifying the
irreducible components [Dulm63] of the BSGs. Edges not
belonging to these components cannot be part of any complete
matching, so they can be removed without excluding any
schedule. Such aremoval can reducetheincident OEI, becausean
OEI cannot be larger than the union of adjacent MEls (after the
time potentialsin the MElsare translated back into clock cycles).
A more thorough discussion on BSGs and reducing OEls can be
found in [Timm93].

If an edgeremoval leadsto the reduction of an OEIl, anew run can
be started to reduce the OEls even more (note that after an OEI
reduction, the OEI can be a set of non—overlapping intervals of
clock cyclesinstead of oneinterval of clock cycles). Such arun
starts with determining new OEIs based on the reduced OElsand
the dependency relationsin the SFG (so the reduction of the OEls
inone BSG caninducethereduction of OElsin other BSGs). Also
the MEls are calculated from scratch in anew run. The union of
al OElscontainsO(|C] - [V]) cycles, where|C|isthelatency, sothe
number of runs is in the worst case O(|C|- [V]). However, in
practice the algorithm already stops after a few runs. With this
approach the execution interval s of the RTs (and consequently the
scheduling search space) can be reduced by exploiting both
resource and timing constraints.

5. Instruction scheduling

A common approach to schedule RTsisto assign them directly to
specific cycle steps. In [Timm954], it is proven that the existence
of aschedulefor agiven SFG with timing and resource constraints
canbedecided moreefficiently by finding correct orderingsof the
RTsin al BSGs of adesign problem. With a correct ordering we
mean an ordering that corresponds to (i.e. can be induced by) a
feasible schedule, see definition 5.

Definition 5: A linear ordering « of the RTsinaBSG is correct
if there is a schedule that induces that ordering, i.e. if

¢élq>:v<w<: e_(g(v) < e_;(w).

If alinear ordering onthe RTsin aBSG isimposed, then each RT
isadjacent to at most one MEI, see[Timm95a]. A correct ordering
implies a bijection between OEIls and MEIs and, consequently,
defines a complete matching in the BSG. In case of a correct
ordering, al adjacent reduced OEls and MEIs will have equa
clock cycle intervals after the execution interval analysis of
section 4 leaves itsiteration (otherwise an OEI or MEI could be
reduced further and the analysiswould continue with anew run).
This leads to the following theorem.

Theorem 2: If for each OCG clique from an OCG clique cover
of adesign problem alinear ordering on the corresponding RTsis
imposed and the set of these orderingsisnot detected asinfeasible
by the execution interval analysis of section 4, then these
orderings are correct and afeasible schedul e can be derived from

the result of the execution interval analysis in linear time. The
feasiblescheduleisderived by scheduling all RTsinthefirst cycle
of their reduced OEI after the execution interval analysis has left
itsiteration. The proof of thistheorem canbefoundin[Timm95a].

Because the execution interval analysis runsin polynomia time,
it followsfrom theorem 2 that the correctness of someordering or
complete matching of the RTscan be checked in polynomial time.
A matching can represent more than one schedule, so the number
of different matchings is equal to or less than the number of
different schedul es. Becausethe check for correctnessisnot more
accuratewhenthe RTsaredirectly assigned to specific cyclesteps,
it is more efficient to search for a correct ordering instead.

The above leads to the following scheduling approach. We start
fromtheinitial BSGsand match the M Elsone-by—oneto specific
RTs, whileremoving the edgesthat can nolonger be part of acom-
plete matching. These edges are the ones previously connected to
theRT and the MElI that havejust been matched (except for theone
between them), together with other edges that are no longer part
of any irreducible component. So each time a matching between
an RT and a MEI has taken place, the whole execution interval
analysis can be rerun to continue the pruning of the search space.
The matching of RTs and MEls is a process in which the initial
BSGs get more and more sparse (an edge that is once removed
doesnot returninaBSG aslong asamatchingisnot revoked). The
search spaceisal so getting smaller during thisprocessbecausethe
OEls and MEls are reduced more and more as well.

Thepriority functionsinthisinstruction scheduling processareas
follows. First welook for the MEI with the smallest end potential .
ThisMEI ismatched with an RT, and the RT isalso matched with
the first MEls in the other BSGs of which the RT is an element.
Then the next MEI with the smallest end potential (which is not
yet matched) is selected, then matched with an RT and soon. If a
matching leads to an infeasible schedule, then the matching is
revoked and another RT ismatched to the MEI. So abranch—and—
bound approach is applied to obtain an exact scheduler.

6. Experiments and results

In[Strik95], a DSP coretogether with an instruction set has been
given. We have mapped the examples of table 1 onto thiscore, and
tried to obtain the highest throughput possible. The examples
range from a simple delay line to a portable audio application
(which is a rea life industry example). The instruction—set
scheduler based on graph matching has beenimplementedin C++
using the architectural interface of the NEAT (New Eindhoven
Architectural synthesis Toolbox) system [Heij94]. Intable 1, we
have compared our approach with an industria high-level
synthesis (HLS) list scheduler.

The table shows, that our approach finds the guaranteed optimal
throughput within acceptable run timesfor al but two cases. The
most interesting examples are the largest examples 4a/b and 5a/b.
Example 4b shows the largest difference between the achieved
throughputsof both schedulers. Thelargest example5a/b consists

Table 1: Throughput results for various examples.

Example #0OCG | sizelarg- | lower bound HLS NEAT instruc- CPU**

cliques | estclique | throughput | scheduler | tion scheduler NEAT
la: RAM delay line (12 RTs, unfol ded) 4 4 5 5* 5* 0.3sec
1b: RAM delay line (12 RTs, folded once) 4 4 4 5 4* 0.3sec
2a FIR filter (37 RTs, unfolded) 11 7 17 17* 17* 12sec
2b: FIR filter (37 RTs, folded once) 1 7 9 o* o* 12sec
3a FIR & Bass Boost (114 RTs, unfolded) 12 16 30 31 30* 7.9 sec
3b: FIR & Bass Boost (114 RTs, folded once) 12 16 25 26 26 8.0sec
4a: Sym. FIR & BassB. (288 RTs, unfolded) 22 29 36 43 38 56.2 sec
4b: Sym. FIR & Bass B. (288 RTs, folded) 22 29 29 36 29* 56.3 sec
5a: Portable audio appl. (358 RTs, unfolded) 21 58 62 67 62* 138.3 sec
5b: Portable audio appl. (358 RTs, folded) 21 58 58 61 58* 139.1 sec

* the throughput equals the lower bound estimation, i.e. is guaranteed to be optimal.

of 58 multiplications, 58 additions, clip actions and delays. The
throughput constraint of thisreal lifeapplicationis64 cycles. The
results on example 4a show, that a dedicated instruction—set
scheduler expl oiting the combination of resource and timing con-
straintsis needed to meet thisthroughput constraint without fol d-
ing. Theresult on example 5b shows, that our approach succeeds
in generating a schedule in which the multiplier and ALU in the
DSP core have a 100% utilization during al clock cycles.

7. Conclusions

In this paper, we presented a code generation approach for in—
house DSP cores. The approach model s resource conflicts (origi-
nating from both aDSP core and aninstruction set) uniformly and
beforescheduling. Thedifferent resource conflictsare cast to abi-
partitegraph matching formulationto prunethe scheduling search
space. In thisway the instruction scheduling step can exploit the
combination of al possible constraintsinstead of being hampered
by them. From the matching formulation, we have derived an ex-
act (branch—and—bound) method to solve the instruction schedu-
ling problem. The branch—-and-bound process does not assign a
clock cycleto eachregister transfer directly, but triestofind acor-
rect ordering of the transfers instead. From such an ordering a
schedule can be derived in linear time. Real life examplesillus-
trated the quality and run time efficiency of the approach.

References

[Cheng94] W.—K. Chengand Y.—L. Lin, " Code Generation for a DSP Processor”,
Proc. Int. Symp. on HLS, pp. 82-87, Niagara—on-the-L ake (Canada), May 1994.

[Chou94] P. Chou and G. Borriello, ” Software Scheduling in the Co—-Synthesis of
Reactive Real-Time Systems”, Proc. of the 318t DAC, pp. 1-4, San Diego (CA),
June 1994.

** measured on a HP 9000/735 workstation.

[Dulm63] A.L. Dulmage and N.S. Mendelsohn, " Two Algorithms for Bipartite
Graphs”, J. Soc. Indust. Appl. Math., Vol. 11, No. 1, pp. 183-194, 1963.

[Heij94] M.JM. Heijligers, H.A. Hilderink, A.H. Timmer and JA.G. Jess,
"NEAT: An Object Oriented High-Level Synthesis Interface”, Proc. ISCAS-94,
pp. 1.233-1.236, London (UK), May 1994.

[Lann94] D. Lanneer, M. Cornero, G. Goossens and H. De Man, " Data Routing:
a Paradigm for Efficient Data—Path Synthesis and Code Generation”, Proc. Int.
Symp. on HL'S, pp. 17-22, Niagara—on-the-L ake (Canada), May 1994.

[Liem94] C.Liem, T. May and P. Paulin, " Instruction—Set Matching and Selection
for DSP and ASIP Code Generation”, Proceedings ED& TC (EDAC-ETC-
EuroASIC) ' 94, pp. 31-37, Paris (France), March 1994.

[Marw93] P. Marwedel, " Tree-Based Mapping of Algorithms to Predefined
Structures”, Digest of Technical Papers of ICCAD-93, pp. 586-593, SantaClara
(CA), Nov. 1993.

[Nieu94] K. van Nieuwenhoven, J. de Moortel, D. Genin and S. Note, "Mistral 2
aTrue Architectural Synthesis™ Tool: from aBehavioral Specification down to
a Register Transfer Level Description”, DSP Applications and Multimedia, Oct.
1994,

[Paul92] PG. Paulin, "DSP Design Tool Requirements for the Nineties: An
Industrial Perspective”, 61 Int. HL S Workshop, LagunaNiguel (CA), Nov. 1992.

[Paul94] PG. Paulin, C. Liem, T.C. May and S. Sutarwala, "CodeSyn: A
Retargetable Code Synthesis System”, Int. Symp. on HL S, Niagara—on-the-L ake
(Canada), May 1994.

[Praet94] J. Van Praet, G. Goossens, D. Lanneer and H. De Man, " Instruction Set
Definition and Instruction Selection for ASIPS’, Proc. Int. Symp. on HLS,
pp. 11-16, Niagara—on-the-L ake (Canada), May 1994.

[Strik95] M. Strik, J. Van Meerbergen, A. Timmer, J. Jessand S. Note, " Efficient
Code Generation for In-House DSP—Cores’, Proc. ED&TC (EDAC-ETC-
EuroASIC) ' 95, Paris (France), March 1995.

[Timm93] A.H. Timmer and JA.G. Jess, "Execution Interval Analysis under
Resource Constraints’, Digest of Technical Papers of ICCAD-93, pp. 454-459,
Santa Clara (CA), Nov. 1993.

[Timm95a] A.H. Timmer and J.A.G. Jess, " Exact Scheduling Strategies based on
Bipartite Graph Matching”, Proc. ED&TC (EDAC-ETC—EuroASIC), Paris
(France), March 1995.

[Timm95b] A.H. Timmer, Ph.D. Thesis (to appear in 1995).

