The new Eindhoven Architectural synthesis toolbox

M.J.M. Heijligers, HM.A.M. Arts, J.T.J. van Eijndhoven,
H. A. Hilderink, J.A.G. Jess, W.J.M. Philipsen, A.H. Timmer

Eindhoven University of Technology
Design Automation Section
PO. Box 513

5600 MB Eindhoven
the Netherlands

Abstract

High-level synthesis of digital systems can be parti-
tioned into several subproblems. The way and order in
which these subproblemsare solvedican change consid-
erably because of different design methodologies, new
tool capabilities or new research results. A new syn-
thesis interface is developed which provides a general
interface to high-level synthesis tools which is indepen-
dent of the synthesis trajectory chosen. The interface
allows for application specific extensions without re-
compilatioﬁs, application specific information hiding,
reading and writing of partial results and enforces con-
sistency of design information. An overview of the
New Eindhoven Architectural synthesis Toolbox inter-
face system, the objects used in this system, and the
relationships among these objects are presented.

1 Introduction

To translate a behavioral description of a chip
(consisting of variables and operations) into a dig-
ital network description (consisting of resources
- functional modules, storage and interconnect -
and a controller), high-level synthesis can be used.
This translation is performed with some objectives
in'mind and is subject to some constraints (both in
terms of area, throughput of incoming data, exe-
cution time, power dissipation, etc.).
Performing the translation in one step is very dif-
ficult and time consuming. Therefore high-level
synthesis is partitioned in several sub-problems,
_ each solving a part of the actual question of the
synthesis problem:

e Selection:

What kind of resources are re-
quired? .

Algorithm + Constraints + Goals

Transtormation

election

il

Allocation

Partiat
Synthesis
Data

Vertfication

Synthesis Data Interface

i

DataPath + Controller

Figure 1: High Level Synthesis System Overview

¢ Allocation: How many resources are neces-
sary?

» Binding: Which operations have to be per-
formed by a specific resource?

e Scheduling: When should specific opera-
tions be activated?

In general these synthesis problems are NP-
complete. A lot of research is done in finding
algorithms that solve these sub-problems satisfac-
torily. The algorithms used, and the order in which
they are applied depend on the constraints and ob-
jectives given, often implied by .the application.
Signal processing, controllers or micro processors
all require a different approach of synthesis to end
up with good network designs. Also the ideas
of the synthesis tool developers will attribute to
the way synthesis is performed (see [McFa90],
[Walk92] or [Gajs92]).

71

M.J.M. Heijligers et.al

The new Eindhoven Architectural synthesis toolbox

72

Current high-level synthesis interfaces only pro-
vide a one way direction of performing synthe-
sis. To allow a large freedom for research iQ the
field of high-level synthesis, an interface has been
developed which is independent of the synthesis
trajectory chosen. In this paper the New Eind-
hoven Archtectural synthesis Toolbox (NEAT) is
presented, which provides an interface to synthe-
sis data independent of the synthesis trajectory
chosen.

2 High-Level Synthesis
Domains

During the high-level synthesis three domains of
data can be distinguished: behavior, time and
structure. Each of these domains is represented

by graphs.

Behavior. The behavioral description of a chip is
often specified by an algorithm, which is written
in a special hardware description language, such
as VHDL, HardwareC or Silage. To resolve the
different nature of each of these languages, a cen-
tral format is needed which can automatically be
generated. This format should closely resemble
the nature of the hardware, but should not impose
a particular architectural solution.

A suitable format to use for synthesis is the data
flow graph as described in [Eijn92]. A data flow
graph is a directed graph consisting of nodes which
represent operations, and edges which represent
transfer of values (tokens). The behavior of a data

flow graph is defined by a so called. token flow .

mechanism. Tokens are objects which can bear a
particular value. Tokens are transported from ori-
gin nodes (producing a value) to destination nodes
(consuming a value) by the edge which connects
the two nodes. A node can start its execution when
tokens are available at all incoming edges. After
execution, the node produces tokens on all its out-
going edges. The values of these outgoing tokens
are determined by the values of the incoming to-
kens and the behavior of the node, specified by the
node type.

To support special language constructs, like loops
and branches. nodes with a different execution
model are introduced. See [Eijn91] for acomplete
overview of all node types and their behavior, In
figure 2 an example of a HardwareC algorithm and
its corresponding data flow graph can be found.
Some advantages of data flow graphs are:

process sxsmple(b, ¢}
in boolean bi8]:
out boolean cf8};
(
«a=1;
while (s < 3)
de (

asa;
bab«+a;
}

c = b;

}

Figure 2: Example data flow graph

o they resolve the different nature of current
input languages

o they have the ability to exploit parallelism
maximally ‘

o they support special constructs (conditionals,
loops)

o they support data types to determine the be-
havior down to the bit level

o they support timing constraints

e they impose no limitation with respect to
thearchitectural solution

o they are rigid enough for formal verification

« they exhibit simple intuitive semantics

Time. A control graph is used to specify the be-
havior of the contrdlling finite state machine of
the design in tune along the time coordinate. The
nodes in a control graph represent states, and the
edges represent possible state transitions. Control
graphs are extended with some special constructs
to explicitely represent conditionals, loops, mul-
tiple active states and hierarchy. The constructs
used in control graphs are similar to those used in
data flow graphs.

Structure. A network graph is used to describe
the resulting digital network. The nodes of the
network graph correspond to physical modules.
Edges represent the interconnection between these
modules.

M.J.M. Heijligers et.al

The new Eindhoven Architectural synthesis toolbox

Figure 3: Graph instantiation of a node

3 Intra-domain relatibns

A data flow graph does not only describe behavior,
but also defines an interface to the outside world
by ‘means of input and output nodes.. The out-
side world enables input nodes to produce tokens.
The graph then executes according to its token
flow model. Qutput nodes only consume their in-
coming tokens, and don’t produce any outgoing
tokens. A graph terminates its execution when
none of its nodes can execute anymore.,

If a graph is used somewhere as one operation, it
will appear as a single node. The node is called
an instantiation of the graph. While creating that
node, the corresponding graph is used as a tem-
plate. The type of a node is used to refer to the
graph which is instantiated, and hence defines the
behavior of the node. The interface of the node,
reflected by input- and output ports, is copied from
the instantiated graph. The names of these ports
are equal to the input- and output-nodes of the in-
stantiated graph. In figure 3 an example of a graph
instantiation can be found.

In each domain instantiation mechanisms are used
to create nodes. The relations between nodes and
graphs within one domain are called intra-domain
relations. Intra-domain relations preserve consis-
tency of data by inheritance of interface, properties
and behavior of graphs. Each node with the same
node type bears the same interface and properties.
Standard operations or modules, like additions,
multiplications, adders, multipliers, ALUs, elc.
can be created by instantiation of the correspond-
ing graph. Those operations or modules, specified
by graphs, can be supplied to the system by li-

braries. The functional contents of most of these
graphs is empty. Their behavior can be specified
by documents (like in [Eijn91]), and/or by com-
puter programs (e.g. sophisticated module gener-
ators). By using intra-domain relations there is no

" need for special support of libraries. Synthesized

graphs can be added to the library without any
need for conversions. Hence intra-domain rela-
tions can be easily used for hierarchical bottom-up
and top-down design methods.

4 Inter-domain relations

In passing through some high-level synthesis pro-
cesses, relations arise among objects of different
domains. A scheduler for instance relates data
flow nodes to particular states; a binder relates
data flow nodes to functional modules. There are
two kinds of such inter-domain relations: -

e Graph Level: Relates behavior, time and
structure, i.e. which data-flow graph can be
implemented upon which network graph, and
which control graph specifies the time behav-
ior. The objects used to denote these relations
are called graph links. .

¢ Node Level: Relates operations, the states

" -in which they are executed, and the modules
‘upon which they are executed. The objects
used to denote these relations are called node
links. Nodelinks are the fine-grain relations
among graphs; they denote relations between
data-flow nodes, control nodes and network
nodes. '

Links don’t have to be specified completely, they
can also be specified partially. This implies that
partial synthesis information can be stored.

An example of inter-domain relations can be found
in figure 4.

5 Storage of tool specific prop-
erties

Each synthesis tool produces specific kinds of re-
sults, and hence needs specific data to store these
results within the synthesis objects. Some general
data, like time, area, power dissipation etc. are
provided by the NEAT system because they are
used by almost every high-level synthesis tool.
However, specific data , like the number of un-
scheduled predecessors of a data flow node, are

73

M.J.M. Heijligers et.al

The new Eindhoven Architectural synthesis toolbox

74

Figure 4: Simplified example of inter-domain re-
lations '

only interesting to a small number of applications.
Adding tool-specific data to the system would re-
quire a recompilation of the complete NEAT sys-
tem and ail tools which are using NEAT. An addi-
tional disadvantage would be the huge amount of
irrelevant data visible to all tools.

The NEAT system uses an object oriented ap-
proach to store data and functions. The C++ in-
heritance mechanism is used to extend synthesis
objects with specific data and functions, which
are only visible to tools which use these data and
functions. An inherited data flow node can for
example contain a member to store the number of
unscheduled predecessors or specific functions to
determine the asap value of the node. In this way
inheritance can be used to develop complete tools.

6 Sharing Synthesis Results

As high-level synthesis i§ pédrtioned into several
subprocesses, communication of intermediate re-
sults between synthesis tools is needed.

The intermediate synthesis results are stored in
plain ascii files. The syntax of these files consists
of a balanced nested paranthesis structure (like
LISP). which only requires simple LL-1 parsing
techniques (see figure 5). Each synthesis tool can
define its own data which is identified by keywords
in the file format. If a tool is not interested in the
information attached to a keyword, it can skip the
information by just counting braces. This implies
that future additions to the format will never dis-
turb existing tools which don’t understand these
new additions. Hence the format is both upward
and downward compatible.

(Afg-view
(graph example
(nude NO
(type input)
(varname in2)
{out -edges E1))

(node N2
(type outpuft)
(in-edges E3))
(edye El
{type data)
{(width 8)

(varname in2)
{(destination NI14 (port N-1))
{origin NO (port out)))

Figure 5: Partial example of textual format

7 Conclusions

The NEAT interface system has been implemented
and documented [Arts92], and is currently used
to develop high-level synthesis and verification
tools. It provides tool developers with a common
procedure interface, including standard object ma-
nipulation functions, search functions, common
synthesis functionality and common data struc-
tures, which saves a lot of programiming effort to
the individual programmer.

NEAT is capable of handling large designs (graphs
with thousands of nodes), in reasonable fast exe-
cution times (several seconds).

References

[Aris92] H. ARTS, MJ.M. HEULIGERS, H.A.
HILDERINK, W.J.M. PHILIPSEN, AND
AH. TIMMER. The Neat Reference
Manual. Eindhoven University of
Technology, pre-release edition, 1992,
[Eijn91] J.T.J. VAN EUNDHOVEN, G.G. DE JONG,
AND L. STOK. The ASCIS Data Flow
Graph: Semantics and Textual Format.
EUT report 91-e-251, Eindhoven Uni-
versity of Technology, June 1991.
[Eijn92] J.TJ. VAN EUNDHOVEN AND L. STOK.
A Data Flow Graph Exchange Stan-
~dard. In Proceedings of the Euro-
pean Conference on Design Automa-
tion, pages 193-199, Brussels, March
1992,

M.J.M. Heijligers et.al

The new Eindhoven Architectural synthesis toolbox

[Gajs92]

[McFa90]

[Walk92]

D. Gaiski, N.. DUTT, A. WU, AND
S. LIN. High-Level Synthesis; Intro-
duction to Chip and System Design.
Kluwer Academic Publisher, 1992.

M.C. MCFARLAND, A.C. PARKER, AND
R. CAMPOSANO. The High-Level Syn-
thesis of Digital Systems. Proceedings
of the IEEE, 78(2):301-318, February
1990.

R.A. WALKER AND R. CAMPOSANO,
editors. A Survey of High-Level Syn-
thesis Systems. Kluwer Academic Pub-
lisher, 1992,

75

