Eindhoven University of Technology Research Reports
EINDHOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
Eindhoven The Netheriands

ISSN 0167 ~ 8708 Coden: TEUEDE

The ASCIS Data Flow Graph
semantics and textual format

by

J.T.J. van Eijndhoven
G.G. de Jong
L. Stok

w

EUT Report 91-E-251
ISBN 90-6144-251-6

Eindhoven
june 1991

Release 1.1

This research is part of the ASCIS project sponsored by the European Community under
contract BRA 3281. ’

© Copyright 1991 by the E:ndhoven University of Technology.

Permission to use, copy, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies.

CIP-GEGEVENS KONINKLUKE BIBILIOTHEEK, DEN HAAG
Eijndhoven, J.T.J. van

The ASCIS data flow graph: semantics and textual format /

by J.T.J. van Eijndhoven, G.G. de Jong and L. Stok. —-

Eindhoven: Eindhoven University of Technology, Faculty of Electrical Engineering.
~ Fig. — (EUT report, ISSN 0167-9708; 91-E-251)

Met lit.opg., reg., index.

ISBN 90-6144-251-6

NUGI 832

Trefw.: digitale schakelingen; computer aided design.

OSF/Motif is a trademark of Open Software Foundation, Inc.
Postscript is a trademark of Adobe Systems, Inc.

UNIX is a trademark of Bell Telephone Laboratories, Inc.

X Window System is a trademark of MIT

The ASCIS Data Flow Graph
semantics and textual format

ABSTRACT

A data flow graph is described for the behavioral modelling of digital hardware. The graph is
to be generated from known hardware behavioral description languages, and. serves as
interface to different architectural synthesis and formal verification packages. For this
purpose the graph has an accurate semantical definition, based on a token flow principle. As
result maximum freedom is obtained to generate different design trade offs, and typical
restrictions of synthesis packages are removed. The textual format is based on keywords and
braces, allowing local or future extensions maintaining both upwards and downwards
compatibility.

KEYWORDS

data flow graph, architectural synthesis, formal verification,
hardware description language

J.TJ. van Eijndhoven
G.G. deJong
L. Stok

Faculty of Electrical Engineering
Eindhoven University of Technology
P.O. box 513
5600 MB Eindhoven
The Netherlands
Phone: +31-40-473345
fax: +31-40-448375
email: jos(leon)(gjalt)(ascis)@es.ele.tue.nl

- i -

SN § 410 o0 Ye L8 Uoq s Lo) o LR

. Data Flow Graph Semantics

2.1 Introductionc.iiiiiiii
2.2 Operation nodesouitiiiii i
2.3 InputandOutputnodes
2.4 Constantnodesiiiiii i
2.5 Branchnodesc.coiiiiiiii i
2.6 Mergenodes . ..ottt e
2.7 Exit and Entry nodes
2.8 Get and Put nodes
2.9 Armay operationsttt e
2.10 Repeated DFG execution, simulation

ooooooooooooooooooooooooooooooo

..................................

....................................

3.1 Introductioniiiiiiiii i e
32 DalatyPe .ottt e e
3.3 Numeric value versus bitpattern
34 INIEgeT tYPE « vttt ittt e
3.5 Fixed pOINtLYPE . .o vviiiit ittt it i iie e e i e e
3.6 BoOlean tyPe ...ttt e e
37 Datawidth e e e
3.8 Numeric value transfer

.................................

4.1 Introductonc.ciiiiiiiiiiieiiii i
42 Timeintervalsoiuiiuiiiiniinenannanennnnnnn
4.3 Constraint specification
4.4 Delay specification
45 Thetimingmodel ittt
46 Rippledelayc.oo it

. Textual Format for the Data Flow Graph

5.1 A flexible format
5.2 Lexical analysis

5.3 Themeta SYNIAX .. voiitnnern e e iiae it erennnnnns
5.4 The DFG syntax definition
5.5 Predefined node types
5.6 Predefined edge types

................................

....................................

.....................................

......................................

.............................

.................................

..................................

. Parameterizationcc.iiieirerroceconsscssonsncnne

...

......................................

ooooooooooooooooooooooooooooooooooooooo

ooo

...

.......................................

......................

. DataTypeand Widthciiiiiiiiiiiiiiinnennnnn.

NN B R R e

btk Pt
N o= O

[y
I

[T = T e o T -
O~ NN h i &

(]
[—]

NN
W s OO

N~
wn

W W NN
2O ST O

W
-,

O W
N O

W
o

£
[

I
o O

8.3 Graph verification
8.4 Skeleton parser
8.5 Synthesis tools

....................................

9, Exampleciiiriiiiiiteiiiitrienttitirieniannaaasannen

9.1 Introduction

9.2 TheProgramc..ciiniiiiinien i
93 Theresultinggraph i
9.4 Its textual representationo.uiernnnniann.

10.Epilogue . . oo oiiiiii ittt ittt inieaeiatiarninaans

oo

40
41
41
42
42
42
42
43

45
46

1. Introduction

This paper describes a data flow graph (DFG) standard for the synthesis and verification of
integrated circuits from a behavioral level description. The development started at the
Eindhoven University of Technology back in 1986*, and was improved and extended
later®**, up to the form as described in this manual. In 1990 the format and its semantics were
adopted by the European ASCIS project (ESPRIT Basic Research Action 3281), having
seven universities and research institutes throughout Europe. The format is intended as
intermediate form between user oriented interfaces (languages, schematics) and synthesis
and verification tools, as well as serving as interchange format between different machines
or sites. Therefor the accurate definition of the graph semantics are of utmost importance.
Allowing maximal freedom to synthesis tools for the generation of different solutions in
different architectural styles without imposing any unnecessary restriction was another
development goal. Due to the long term research aspect of the related work and the different
requirements of individual sites and tools, flexibility and extensibility were the major design
goals for the file format. Although a textual format was strongly preferred over a binary
format for several reasons, human readability and writability was hardly a design issue. The
intended usage is illustrated in Figure 1.

Figure 1. DFG positioning

* Stok, L. and R. Yan den Bom, G.LJ.M. Janssen
HIGHER LEVELS OF A SILICON COMPILER.
Eindhoven: Faculty of Electrical Engineering,
Eindhoven University of Technology, 1986.
EUT Report 86-E-163. P. 86.

** Stok, L. and R. Van den Bom, J.A.G. Jess
EASY: MULTIPROCESSOR ARCHITECTURE OPTIMISATION.
" In: LOGIC AND ARCHITECTURE SYNTHESIS FOR SILICON COMPILERS.
Proc. Int. Workshop on Logic and Architecture Synthesis for Silicon Compilers, Grenoble, May 1988.
Ed. by G. Saucigr and PM. McLellan.
Amsterdam: Elsevier, 1989. P. 313-328.

/. [ntroduction

The straightforward advantage of this scheme is of course the independence of the different
synthesis tools developed at various sites from the complex user level interfaces. The DFG
format is a relatively simple interface (both in syntax and in semantics). The detailed
semantical interpretation of languages like VHDL and ELLA for synthesis purposes is not
trivial, and can now be done independent from the synthesis environment.

Due to the EDIF and LISP like structure of the format with braces and keywords, individual
tools and sites can add information to it, without disturbing other tools who don’t know
about these. The format might be used throughout the synthesis process, by repeatedly
annotating the graph with the results of individual tools. This leads to a schema as in
Figure 2.

Figure 2. Extended use of the DFG.

The decoupling of the synthesis software in several smaller tools, greatly improves the
manageability of such a system, and allows a choice of algorithms for the basic tasks. On

modern workstations the parsing and generation of the DFG text files is extremely fast, and
hence not of real concemn.

The employed graph model does not distinguish between data path and control flow, and
allows cycles to model loops in the algorithmic behavior, providing maximal freedom for
different implementation styles. The uniform and combined treatment of data and control
has resulted in both a concise semantical definiion and an extreme flexibility for
architectural synthesis. The data flow graph provides a maximal parallei description of the
algorithm, from which many design alternatives can be generated. The generation of such a
graph from a procedural sequential programming language requires a full data flow

analysis, involving a detailed lifetime and scope analysis, through conditional statements,
loops, and procedure interfaces. The complexity of this task is nxn with n the number of
operations in the input text (See EUT report reference, footnote page NO TAG). In practice
this means that descriptions of relatively complex chips (programs of several hundred lines)
can be converted to a data flow graph representation in a few seconds cpu time on a standard
workstation. The combinaton of the consistent merging of data and control flow even for
loops, and the maximal parallel representation are unique features of this model.

The adoption of a token passing semantics results in a behavioral definition which is really
independent on time. All current synthesis systems have built in restrictions, either silently
accepted or explicitly chosen, regarding timing, such as a uniform clocking scheme over the
chip, either bit serial or bit parallel operations but not a combination, the usage of clock cycle
boundaries at the start and end of loops in the executed algorithm, a single thread of control
in stead of multiple threads for on chip parallelism. For an exchange of designs between
different synthesis systems, the exchange format itself should not inherently imply such
restrictions, to enable a comparison between these systems. We believe that the token
passing semantics comes closest to an unrestricted behavioral definition.

This document describes release 1.1 of the data flow-graph format. Compared with the
previously distributed manual ("The ASCIS Data Flow Graph, semantics and textual
format”, by Leon Stok, Gjalt de Jong, Jos van Eijndhoven, dated November 19, 1990) the
only real changes in the format are the omission of the node—list and edge~list keywords, as
was proposed and accepted in the meeting at Grenoble, November 23, 1990, and a
modification of the initial view keyword to allow a cleaner extension for the inclusion of
scheduling and allocation results. New extensions are described in this manual for data
typing, parameter passing, multidimensional arrays, and timing information. Furthermore
some text on semantical issues is refined. All relevant changes are highlighted by revision
bars, as showed on this paragraph.

2. Data Flow Graph Semaniics

2. Data Flow Graph Semantics

2.1 Introduction

The data flow graph (DFG) consists of nodes and directed edges. The nodes represent
operations in the behavioral specification, and the edges model the transfer of values
between these. Thus a single edge indicates that the result of one operation is passed to the
argument of another one. One single data value instance is defined to be a token. We define
the execution of an operation (node) as the process where a token is fetched and removed
from the incoming edges, and tokens —containing the result of the operation— are put on the
outgoing edges. Of course this execution can only be done when tokens are resident on the
incoming edges, and hence the execution order of the operations in the graph is constrained
by the partial ordering of the nodes as defined by the directed edges.

Every argument of an operation ¢an be seen as an inpur port of the operation, and the single
result can be seen as the output port of the operation. It is required for a data flow graph that
only one incoming edge is allowed to arrive on any input port. However several outgoing
edges can leave from the output port. If the execution of the node results in a token on this
output port, then this token is copied onto every outgoing edge connected to the port. In
general nodes can have several output ports, each with zero or more outgoing edges.
However in many cases (commutative operations with one single output) there is no reason
to distinguish between individual ports on a node, and hence ports are often left undefin

(implicitly defined). '

In theory we will allow multiple tokens to be resident (queued) on any edge, giving maximal
freedom in scheduling the execution of operations over time. However everybody who
wants to use (create) such a schedule is itself responsible for synthesizing suitable hardware
for these queues. Luckily -besides asynchronous use of put and get nodes— the finally
resulting values (tokens) do not depend upon the chosen execution order, and it is normally
always possible to choose a restricted order of evaluation in which never more than one
token is resident on any edge*.

To provide a more accurate definition of this execution behavior, we will distinguish
between a few different node types. The sections below present a global overview only, for a
detailed treatment of each individual type, see section 5.5 on predefined node types.

2.2 Operation nodes

Operations can be arithmetic, like x, —, +, ++, or boolean like A, v, <, =, or can be more
complex functions. The available set of operations is not defined nor restricted by the DFG
format. However to successfully exchange designs between project partners, it is required to
agree on the names of a few basic operations, their allowed number of inputs, and

* Delong, G.G.
DATA FLOW GRAPHS: SYSTEM SPECIFICATION WITH THE MOST UNRESTRICTED SEMANTICS.

In: Proc. European Conf. on Design Automation (EDAC), Amsterdam, 25-28 Febr, 1991.
Los Alamitos, California: IEEE Comp. Soc. Press, 1991, P, 401-405.

—especially for non—commutative operations— on the names of their input ports. The format
also provides for nesting of graphs in the same way as procedures in normal programming
languages. The instantiation of another graph is performed by using a node'type name,
referring to the name of a graph defined elsewhere in the textual description. Despite this
node type name, an instantiation distinguishes itself in no way from a normal basic
operation, and hence these can be regarded as instantiatons of implicitly defined
procedures. The port names used in the instantiation, correspond to the node names of the
input and output nodes of the procedure (graph) definition. This allows among others to
change from a standard predefined (complex) node typeto a locally defined subgraph by just
changing the type namie, and hence monitor the differences in system behavior with different
operator implementations.

Any operation node always waits for execution until an input token is available on each
input edge. It can then be executed, which will normally result in a token for its (single)
output port, which is copied onto each attached outgoing edge. Note however that executing
an operation can implicitly involve the execution of a complex subgraph, which in general
does not necessarily need to produce a token for each output.

2.3 Input and Output nodes

Every graph requires at least one node of type input, and can have one or more nodes of type
output. Nodes of type input are the only nodes without input ports, and have one output port.
Vice versa nodes of type output are the only nodes without output ports, and have one input
port. If the graph would be instantiated elsewhere as operation, then the names of these input
and output nodes define the port names of the operation.

To execute a graph, one single token must be placéd on each input node, and repeatedly a
node is selected and executed which has a token available on each of its inputs. The
execution terminates if no node can be selected any more.

For more complex input/output communication the put and get nodes should be used as
defined later.

2.4 Constant nodes

Nodes of type ’constant’ are nodes which generate a constant data value at their single output
port. To indicate when this token is to be produced, these nodes also have one input port, and
hence can be treated in the same way as unary operators. Edges with the sole purpose to
activate ’constant’ nodes are distinguished by giving them type ’source’, to indicate that the
data value of their tokens is actually ignored. Edges of this type can also form entry—exit and
branch—-merge constructs, basically for backwards compatibility reasons. The usage of a
constant node, together with a simple operation and a pair of input/output nodes is depicted
in Figure 3.

2. Data Flow Graph Semanuics

source edge .\ data edge

X=X+3; O

Figure 3. Simple DFG with constant node.

2.5 Branch nodes

A branch node has two input port$ (incoming edges): a ’control” port and a *data’ port, and it
has two or more output ports. A branchnode passes the token from the incoming data edge to
- one output port, which is identified (selected) by the value of the token on the control port.
Thus the node can be executed if both inputs have a token, and as result one token will appear
on precisely one output port. The output ports have names which are implicitly defined as
the numbers ’0’, *1°, and up. Attached to each branch node in the graph definition is a
selection list: an ordered list (vector) containing all different values. Each of these values is
hence associated with an index, by definition numbered from 0’ upwards. The value of the
control token must match exactly on€ value in this list, which gives an index number
corresponding to the name of the selected output port (See also the foomote at page 32). If
the selection list is not given, implicitly a list is assumed containing the values (0, —1). The
integer values 0 and -1 are identical to the boolean values false’ and 'true’ respectively.
This defines proper semantics for instance for the connection of the output of a boolean
operator (like ’<’) to the control input, without explicitly specifying such a selection list. The
l edge connected to the control port, must have an edge type ‘control’. This allows a
discrimination of this edge for drawing or synthesis purposes, but in no way influences or
redefines its behavior. The edge of type control is implicitly assumed to be connected to the

“control’ port, and the incoming data edge to the *data’ port, and hence no port identification
is required for these edges.

2.6 Merge nodes

Merge nodes are dual to branch nodes, having just one output port, one input control port and
several incoming data ports. A merge node passes the token from just one incoming data
edge, selected by the value of the token on the control edge, to the output port. The selection
of the output port is done with a selection list, in the same way as for the branch node. The
execution rule of this node is different from all other node types, in the sense that it can
execute as soon as a token is available on the control input as well as on the selected input
port. Thus execution does not require a token at all inputs!

The branch and merge nodes are necessary for algorithmic constructs like if ... then ... else,
or case ... of. An example of such a construct is shown in Figure 4.

a b q
data edges r———— ____1wmm
| edges
————
I
) I
if (q) then a++; | |
else b++; §
. I
|
|
T
————d

Figure 4. DFG if-then—else example.

The generation of these branch—merge constructs is.governed by the following rules:

e A pair of branch—merge nodes is used for each variable read or written in the then or
else part.

¢ The control edges to all branch and merge nodes of one statement always originate from
one unique node generating the condition.

e Ifavalueisused in the then or else part, but not afterwards outside the if-then—[else]
statement, then the corresponding *merge’ node would not obtain an outgoing edge, and
hence this node can be omitted, together with its attached edges.

e Ifavalueis generated in the then or else part which didn’t exist before, there would not
be an incoming data edge on the branch node, and hence this node can be omitted with
its attached edges.

So in general branch and merge nodes can appear in complex irregular structures, and in fact
no restrictions apply to their connectivity structure.

2.7 Exit and Entry nodes

Exit and entry nodes are functionally identical to the branch and merge nodes respectively.
However these nodes are used to build loop constructs, which could originate from while ...
do or for ... do statements. The connectivity of the exit and entry nodes to create a loop
construct is depicted in Figure S. and Figure 6.

2. Data Flow Graph Semantics

while (@— > 0)
{ x=x+3;} Q

Figure 5. DFG while—do example.

dox=x+3;
until (q—— <= 0)

Figure 6. DFG do-until example.

As for the merge and branch nodes, the edges connected to the "control’ inputs of entry and
exit nodes, must all originate from one node generating the control value, and these edges
get the type ’control’. In contrast to the branch—-merge constructs, the loop constructs with
entry and exit can never degenerate in simple cases, leading to the omission of an entry or
exit node. Therefor there will be always a distinguishable pair of entry—exit corresponding
to each value in a loop statement. However in simple cases some edges might be missing: If
a value in the loop is not used afterwards, the output port 0’ of the exit node has no edge
attached. If a value is created in the loop, noedges are attached to port ’0’ of the entry node. If

a value is just read and not written in the loop body, no edge is attached to port ’1” of the exit
node.

The loop construct introduces cycles in the DFG. This are cycles through entry, exit and loop
body, and cycles through entry and loop test. These cycles are relatively easy to find, due to
the fixed structure of the loop construct. The loop construct has a set of entry and exit node
pairs, connected together by ’control’ edges to one node, generating the condition. Although
this will normally not be generated from most behavior level user interface languages, the

entry and exit nodes can have more ports and a selection list as the branch-merge nodes.
Therefor several different loop bodies might exist, and a loop could be entered or left by
more then one port id. The edges that form the boundary of the loop body(s) or the loop test,
all connect to the entry and exit nodes. In principle no other edges are allowed to
leave/enter the loop body(s) and loop test, and these entry and exit nodes hence separate
disjunct subgraphs from the environment. The entry into the loop and exit out of the loop
must always occur on the same port name(s). The resulting structure is depicted in Figure 7.
Note that the loop test is a uniquely identifiable subgraph, always connected between the
“entry’ output ports and the ’exit’ data input ports, and has one output to all entry and exit
control inputs. Other cycles are not allowed in the DFG. Note however that loop constructs
can nest.

Figure 7. DFG more general loop structure.

To allow a proper execution of these loops with the token passing method, a special
initialization is required: When the execution of a graph is started, all input nodes obtain one
token, and at the same time all entry nodes must obtain a token at their control input,
selecting the input port for external data to enter the loop (often port '0”). Note that the exit
nodes do not obtain such an initialization token! If the graph is repeatedly executed for
different sets of input tokens, the loop constructs must not be reinitialized for each input set:
such tokens are automatically left after each loop termination.

Although the token passing semantics would give the impression of a sequential execution
of the loop, this forms in no way a restriction towards different implementations. Note that
the unrolling (unfolding) of a loop in the DFG is a simple and straightforward operation. If
the loop is to be implemented sequentially, the token flow leaves maximum flexibility with
respect to synchronization and timing issues. Of course clock cycle boundaries and state
transitions must be introduced to execute the loop, but there is a free choice for the placement
of this clock boundary: it does not have to be at the entry nor at the exit nodes. It is even

2. Data Flow Graph Semantics

perfectly allowed to desynchronise the loop cycling of different variables, for instance one
variable might have completed 10 cycles, whereas another variable of the same loop has
done just 2 cycles. In the simulation process, such asynchronous execution leads to queueing
of multiple tokens on (at least) the control edges.

When generating DFGs from well structured high level languages, the entry—exit nodes
naturally partition the DFG into subgraphs as indicated in Figure 7. However for specific
problems, one might find this restriction too tight. Situations where one might insist on
having edges out of the loop body can for instance be the unrolling a loop for only some of its
variables, or explicit indication of multirate behavior. In such situations adding these edges
can be considered, since the token flow mechanism will still define a unique behavior.
However you must be prepared to encounter several tools complaining and/or failing.
Furthermore you must be extremely careful that all generated tokens are also consumed, and
not unintentionally left in the graph.

2.8 Get and Put nodes

Get and put nodes are to provide a mechanism for communication protocols with the outside
world and can therefor appear anywhere in the graph, such as inside 'if or "loop’ constructs,
in contrast to ’input’ and "output’ nodes. These get and put nodes make a reference to 'ports’
through which external communication is to take place, which can for instance model pads
on the chip boundary.

Get and put nodes which use one physical port are linked in sequential ’chains’ to set the
order in which read and write operations should appear on the port. In this chain get and put
nodes are linearly ordered, but can appear in any order between each other. For the
connection of chain type edges to the put and get nodes no ports are explicitly indicated: they
are implicitly assumed to exists and have no name. A get node furthermore has a ’data’
output port, a put node a *data’ input port. Due to the typing of edges, explicit mentioning of
port names is not required. When tokens are available on the "chain’ and ’data’ input edges,
the execution of the get node is assumed to wait or delay until a data value is available from
the outside world: only then the node terminates its execution by presenting the obtained
data value as output token. The same holds vice versa for the put node: it will delay unl the
external world is ready to accept the offered data value. When put and get nodes appear
within ’if* or *while’ constructs, the chain edges also appear in these constructs, with there
own branch—merge or entry—exit node pairs. If put or get nodes for one physical port appear
both in a main graph and in instantiated procedures, these edges should go through the
procedure call and body by hereto added input and output ports on the procedure interface.
In every graph, the chain of put and get nodes starts at an ’input’ node and ends atan ’output’
node. The usage of put and get is depicted in Figure 8.

chain edge : ~--.__source edge

-

chain edge ,’

4 A

chain edge .
x = get(); \
if (x<0) x = get();
X++; chain edge °,
put(x);

control edge
) data edge
chain edge’',
chain edge Y
Figure 8. DFG get and put example.

2.9 Array operations
For operations on arrays three node types are provided:

The node type ’array’ functions as array declaration. An edge of type "source’ is attached to
its ’source’ input port, activating the array declaration. The declaration contains an
’array—dim’ statement, which defines the array dimensionality and its size in each
dimension. The array can be initialized with constant values with the ’const-value’
statement. The "array’ node has one or more outgoing edges of type ’chain’, providing
linkage to the other two related node types: 'retrieve’ and 'update’.

The 'retrieve’ nodes are used toread data values from the array, and have one or more "chain’
input edges, and zero or more "chain’ output edges. They have a number of ports for indices,
matching the array dimensionality, implicitly defined as *0’, ’1’, '2’, etcetera, to which
"data’ type edges attach to address one value, and finally a data’ output port.

The ’update’ nodes are used to write values in the array. They have chain edges, and data

edges providing indices as the 'retrieve’ nodes, and have a *data’ input port for the value to
be written.

The chain edges are used to specify a (partial) ordering in which the retrieve and update
operations must take place. Coming from a sequential (procedural) input language, it seems

.. Data Fiow Graph Semaniics

natural to connect all retrieve and update nodes in one serial list (chain) in the same order as
they appear in the input language. However a careful analysis of the retrieve and update
operations, (with variable or constant indices) might reveal a degree of parallelism
(independence), allowing more freedom in scheduling. For this purpose the chaining of
array, retrieve and update nodes is in general structured as a connected acyclic graph,
containing exactly one node with outgoing edges only: the ’array’ node. Note that these
chain edges can also pass through branch, merge, entry and exit constructs, and graph
(procedure) instantiations. These edges do not have a port id when connecting to "array’,
‘retrieve’ or "update’ nodes (but will have when connecting to loop constructs or procedure
instantiations). An example of array usage is given in Figure 9.

chain edge .

4

int A[10];
for (i=0; i<10; i++)
- Ali]=0;

L

Figure 9. DFG array example chain edge

2.10 Repeated DFG execution, simulation

The DFG format is designed to model a piece of hardware. It is anticipated that one
execution sequence of the graph, does not physically destroys this hardware, and hence can
be repeated. An infinite loop over time as normally supposed for most applications is
therefore implicitly assumed. The graph is executed in cycles: A token must be presented at
each input node, and subsequently nodes in the graph are evaluated if each incoming edge
has a (at least one) token. This evaluation (execution) of nodes continues until no node can
be selected any more. Normally this leads to one or more tokens to appear-at the output
nodes. The state of the graph (distribution and values of tokens, values stored in arrays) after
one such execution cycle should remain intact as initial condition for the next cycle. A new
set of input tokens is offered and the process continues. Only before the very first cycle, an
explicit initialization must be done: The graph must be cleared of any tokens, only at the
control input of all "entry’ nodes a single initialization token must be inserted, and the output
of all *delay’ nodes is initialized with their specified tokens. At startup time arrays are not
initialized, except where explicitly specified in the format.

A simulation program implementing the DFG token flow semantics is not (yet) available. It
is even questionable whether such a tool is helpful to a designer. Probably designers feel

easier with simulators which directly work at their input specification (i.e. VHDL, ELLA,
Silage, HardwareC). If the specification in these languages simulates satisfactory, the next
desired level of simulation is probably after architectural synthesis at the register transfer
level, where global indications can be obtained on the time and space performance of the
generated architecture. However a dedicated simulator for this DFG format might be
desireful as aid towards a better understanding of this new specification level. It furthermore
could assist in discussions on the actual DFG semantics by providing a behavioral reference.

3. Data Type and Width

3. Data Type and Width

In this chapter the concepts of data type and data width are introduced. These are new in this
release of the manual, and hence comments and suggestions for improvement are welcome.

3.1 Introduction

In the DFG data transport is represented by edges. Hence data types and data widths are
(optional) properties of edges in the graph. The dara width (edge width) is the number of bits
that conceptually make up the data value and are involved in the data transfer. In general this
can be different from the number of wires in the resulting hardware: The mapping to
hardware could generate things as dual rail or bit serial transmission.

The data type determines the interpretation of the bit pattern to a numeric value. This data
type is of importance for the selection of actual hardware modules performing the arithmetic
operations of the nodes, and for simulation of the graph behavior. Data types are not a
property of the nodes itself, and the mechanism of selecting a hardware module depending
on the data types of the attached edges can be referred to as overloading.i’he data type is
furthermore‘required for the process of width adjusting. This is required when the width of
an edge does not agree with the width of the port to which it connects.

3.2 Data type

A data type is an optional property of an edge, and is specified there with a data type name.
Such a data type name is introduced and defined with file scope, thus one definition is global
to all graphs defined in one file. A data type def statement is located outside any graph,
introduces the data type name, and optionally attaches arguments which specify the numeric
interpretation of the (any) bit pattern. For now the syntax allows to express two’s

complement, unsigned, and signed magnitude, binary coded integer and fixed point
numbers, as well as booleans.

Up to now no formats are defined to handle things like floating point numbers, text, records,
or attributes as ’address of ', as well as counting schemes which differ from the normally
binary number representation such as binary coded decimal numbers. This means that for
these unsupported data types, you cannot express in the standard format your semantics
(interpretation) of these values at the bit level. However omitting the arguments that define
the data type interpretation, still introduces the data type name. Hence you can use this name
to overload the operators, and do both your intended synthesis and simulation. However by
just porting the DFG format, you cannot explain others the intended semantics. Although the
type definitions have no direct support for record-like data structures, the bit operations do

allow you to extract or insert bitfields. By appropriate data typing, record structures could be
imitated.

A definition of a data type must specify a default width. This width value will be inherited by
all edges of this data type, who do not have an explicit width assignment. Furthermore a
default data type can be specified at file scope for each edge type. This allows an easy
introduction of data types into graphs who do not yet have these.

3.3 Numeric value versus bit pattern

Numeric values and bit patterns are semantically considered as two different domains,
which are bridged by data type definitions. Without data type definitions the DFG can
operate in the domain of numerical values. Constant values can be specified in the form of
decimal numbers. Numerical operations as +, —, X, ++, and < or = operate as mathematically
expected. These numerical values are passed correctly through branch and merge nodes
etcetera. The graph thus properly models a behavior. The behavior in this ‘numerical value’
domain corresponds to specifications like computer programming languages. Even ’'low
level’ languages as C, do not define the behavior at the bit—level, but leave this (on purpose)
machine dependent.

In the domain of bit patterns (bit vectors) the DFG can correctly pass around bit vectors as
data values (tokens). Constants are specified in the form of strings of hexadecimal or octal
digits. Bit operations as &, |, ~, bit-merge are valid in this domain. Of course branch and
merge etcetera work as expected.

Without the annotation with data types and data widths, numerical operations have
undefined semantics on bit patterns (you cannot associate a value with them), and bit
operations have undefined semantics on numerical values (you don’t know the involved bit
pattern). The addition of data types and widths can be seen as the first hardware design
decisions. After adding them, numeric values are automatically converted to bit patterns
and vice versa, hence numeric and bitwise operations can be freely intermixed. See
Figure 10.

data types

numeric domain data widths

bit pattern domain

| de alconstanxs oy hexadecimal, octal constants

bit—merge bit-select bit—concat

Figure 10. Numeric versus bit pattern domain

Data types have no meaning or use on edges of type ’source’, 'chain’, and ’timing’, since
such edges do not transfer data values, but the presence of tokens only.

3.4 Integer type

For the integer data type a differentiation is made between unsigned, signed magnitude and
two complement integers. The data word is assumed to be stored in a vector bit[], where
individual bits take the numeric value / or 0.

3. Dara Type and Width

The numerical value of an unsigned integer of width w is given by:

w-1
value = > biri]- 2!
i=0

The numerical value of a signed magnitude integer of width w is given by:

w-2
value = sign - bifi]-2'
1=0

with sign = 1 if bitfw—1]=0 and sign = —I otherwise.

The numerical value of a two complement integer of width w is given by:
w2]
value =) bitf[i] -2 - bifw—1] - 2"
i=0

Note that when bit{fw~1]=0 all three types have the same numeric interpretation of the bit
pattern, but otherwise return three different values.

3.5 Fixed point type

For the fixed point data type a differentiation is made between unsigned. signed magnitude
and two—complement numbers, and a numerical value for a (binary) exponent is specified.
The numerical value of such a number with width w and exponent e is given
by:

value = (integer value of bit partern) - 2°

Where the integer value is taken from the previous paragraph with the corresponding
formula for unsigned, signed magnitude, or two complement integers. In the data type
definition the exponent e can be given any integer (positive or negative) value. Note that e is
independent of w.

3.6 Boolean type

The boolean data type is defined to represent the boolean values true and false. Normally
these values will be represented in a data word of width 1, but for width adjustment the
boolean data type is allowed for any width. The value of a bit vector is defined as follows:

w-1

value = true if N bitli] =1
i=0

w-1
value = false if N bitli] =0
l::O
For all other cases the boolean value is undefined. To obtain proper width extension and
reduction, maintaining the all-zero and all-one property, the boolean data type is by
definition equivalent to two—complement integer. This implies that for instance

true & x = xfor all bit vectors x, also after width adjustment of rue to the width of x. This
property was considered highly desired. As result of having boolean type equivalent to
two—complement integer by definition, the numerical value of faise is 0, the numerical value
of true is —1. Or, in the other way around, the two—complement integer values 0 and —/ have
the all-0 and all-/ property for every width w2/.

3.7 Data width

The width of an edge is a property which is setin pnnaple independent of the data type. Data
type definitions (should) specify an interpretation for a variable number of bits in the data
word. Widths of ports* and edges do not necessarily have to match. An appropriate width
extension or reduction is implicitly assumed at the point of the connection. Although
normally the operators will be chosen (generated) to match the width of the edges, this might
not always succeed. Examples might be an addition operation with two arguments of
different width , or the mapping of two operations of different width onto a single operator.
_ The way this width adjustment is done, depends upon the data type. This should be done in
~ such a way that all numeric values that are representable in the smaller width, are not
affected by both width extension or width reduction. Due to this constraint on numeric value,
the actual generation of the. bit patterns depend upon the data type. These few lines are
- sufficient for a unique definition of the width resizing for the data types presented in the last
few paragraphs, but can be stated explicitly as follows: Assume the data value on the edge is
represented by a bitvector bitf] with width w, and the port represented by a bitvector port[]
with width p, then: '

* Note that ports in the DFG do not have a width. Only when the operation is mapped during synthesis to
some hardware module, the ports of the module have a width defined.

3. Data Type and Width

p<w D>w
unsigned p-1 w-1
8 X/ portli] = bir[i] N portlil = bitli]
i=0 =0
p-1
X/ portlil =0
two—-complement p-1 w—1
P X portlil = biti] Y/ porti] = bit[i]
i=0 i=0
p—-1

X portli] = bitflw - 1]

i=w

signed magnitude p-2 w—2
Y poriil = bitfi] V' port{i] = bit(i]
=0 =0
ort{p —1] = bitflw -1 p-2
.p fp w~1] ¥ pontil=0
i=w-1 e
portlp — 1] = bitfw—1]
No numeric type p-1 w-1 . N
just birvector Y poriil = bitli] X/ portli] = bitli]
=0 i=0
& p—l
Y porifi]=0

i=w

Widths and data types have no meaning on edges of type ’source’, ‘chain’, and ’timing’,
since such edges do not transfer data values, but the presence of tokens only. If a different
width adjustment is desired which does not agree with the above table, this can be explicitly
created by means of the bit operation nodes.

3.8 Numeric value transfer

The addition of data types and widths to a graph is not just annotating more information, but
can —and often will- really change its behavior. Without data types, -umeric values are
passed along edges without loss of accuracy or range limitations. Arzer addition of data
types, the edges can represent only a finite number of discrete values which can disturb the
data transfer. The process of transferring numeric values is explained as follows: For any
numerical result of an operation (including constant nodes), a bitpattern is to be made,
representing the value according to the data type of the attached edge, in a width just large
enough to accurately represent the value. Then this pattern is taken as ’port’ value to be
converted to fit the edge width as in the previous table. For a hexadecimal or octal constant,
this initial bit pattern has a width just large enough to hold all nonzero bits. This process must
be repeated for any edge attached to the output port, since these edges might have different
data types or widths. Thus for example the value *3’ and patterns '0x3’ and *0x03’ all three
lead to the same bit pattern on a two—complement integer edge. If the width of this edge is >3,
the receiving node obtains the numerical value *3’, otherwise it receives the value -1°. If a

- 18 -

data value cannot be represented in the data type of an attached edge, this is considered a

fatal error: numerical values of -3 or 2.5 cannot be assigned to edges of type unsigned
integer.

4. Timing J

4. Timing

4.1 Introduction

This chapter will discuss timing properties of the data flow graphs and the related semantical
issues. All timing aspects are optional in the graph format: its semantics as algorithmic
specification on data values will always remain independent of any timing information.
Although optional, timing aspects are extremely important during the synthesis process.
Hence the discussion in this chapter cannot be limited to purely behavioural aspects of the
graph as model, but time aspects of the underlying —to be synthesized— hardware do appear.
To make a distinction between these, we will use time constraints to indicate hard
limitations with respect to the timing behavior of a design, imposed by the external world,
and we will use time delay to denote a timing property of any hardware used, selected or
generated during the synthesis process. The combination of these constraints and delays
bounds the search for optimal time-area trade—offs during the synthesis process. Since the
constraints can be regarded as real behavioural specifications, they deserve a full and well
standardized place in the DFG format and semantics. From this specification pointof view
the delays basically do not belong to the DFG, since these depend upon chosen hardware,
and become known only during the synthesis process. However due to the strong relation
between these, we will define a meaning for the delay concept and a textual representation in
the format. Treating both will help in discussing the timing concept, and allows more
opportunities to exchange design information and compare tool (scheduling) results. .

Another timing constraint often imposed by the external world for the design to be
synthesized is the system clock cycle time. The DFG syntax allows to express minimum and
maximum bounds for this. Of course this is important information for the module selection
and scheduling process.

All absolute timing data such as asynchronous (real time) delays and clock cycle times are
expressed as decimal floating point numbers in units of seconds.

4.2 Time intervals

Both for timing constraints and delays a time interval must be specified. For each such
specification a choice can be made between either an asynchronous or a synchronous
interval specification.

An asynchronous specification provides a single numerical value describing an interval in
real time (in seconds).

A synchronous specification provides an integer value, describing a time interval in units of
full clock cycles. The synchronous specification optionally contains a leading edge interval
in real time (the time required before the first clock transition), and a trailing edge interval in
real time (the time required after the last clock transition). It is assumed that these leading
and trailing intervals take only a (small) fraction of the actual clock cycle time. A clock cycle
value of n>0 means that the interval contains n full clock cycles plus the optional leading and

trailing intervals, a clock cycle value of 0 means that the interval contains just a clock edge
with the leading and trailing intervals. As special exception the number of cycles can be
specified as —1, meaning that the number of cycles is unknown (cannot be determined at
compile time), and can depend upon the involved data values.

4.3 Constraint specification

Timing constraints are specified as (optional) propertes of edges of type timing. These
edges are added to the graph for the sole purpose of capturing time information. They
participate as other edges in the process of token passing, only the data value on the tokens is
ignored. A timing edge without a constraint specification hence introduces an extra
constraint on the execution ordering of the attached nodes. A minimum timing constraint
can be added to specify that the destination node should never be executed within a certain
time interval from the execution of the originating node. Equivalently it is considered an
error when any token stays shorter on a timing cdgé than a specified minimum timing
constraint. A maximumtiming constraint can be added to specify that the destination node
must be executed within a certain time interval from the execution of the originating node.
Equivalently it is considered an error when any token stays longer on the edge than the
specified maximum timing constraint. Due to their nature of being constraints on thé™
behavior of a graph, these edges will normally appear between input and output nodes or
between get and put nodes of a graph. However they are allowed between any two nodes.

chain edge Chain edge /

.

N
\ timing
\ edge

timing // data
edge // edges

chain edge

-
—~ timing

get edge

chain edge

Figure 11. Ordering constraints between Figure 12. Constraints on the
I/O operations on two ports graph execution time

4.4 Delay specification

Delay specifications will normally be used for the nodes in the graph. Values for these delays
are assumed to be inherited or fetched from a module library, as a result from a module

- 21 -

4. Timing

selecton process. Both minimum and maximum delays are supported: A minimum delay is
at least consumed by the node before generating an output token, a maximum delay is the
time interval in which an output token will certainly be generated. Of course these are not
both required: if only one (nominal) delay value is available the maximum entry will
normally be specified. Delays are also allowed on edges although this probably has minor
use.

4.5 The timing model

For an accurate specification of the timing behavior of the graph the execution model is
explained. When delay values are inserted in the graph, the graph execution can reveal
timing information, however remind that the basic reason to introduce these delays is to
inform a scheduling algorithm. Besides a numerical and/or bitpattern value, each token now
carries a time point. In principle this time point has two components: an integer number
indicating the current clock cycle, and a number giving a real time delay after the last clock
edge. If the clock cycle time is known, these two can of course be combined into one number,
either in absolute real time or relative with respect to the cycle time. The time value carried
by any token is normally the point in time where the token became available at the output of a
node. If edge delays are specified, this time point is accordingly updated before the token
appears at the edge destination (a node input).

Any primitive node will generate an output token at a time point of its delay later than the
arrival of the last input token. If both a minimum and a maximum delay are available for the
node with different values, an undeterministic time point results from this interval.

Any node corresponding to the instantiation of a graph passes its input tokens unmodified to
the input nodes of the graph definition. This subgraph is then executed and tokens appearing
at output node(s) are passed again to the corresponding output port(s) of the instantiating
node. This implies that a delay specification for such a node is actually ignored. The
resulting timing behavior of such a node is hence basically different from a primitive node:
An instantiating node with for instance three inputs and two outputs might generate a token
atits first output at a time point where the third input token has not yet arrived! Such behavior
does not conflict with the execution mechanism as presented in section 2.2: timing just adds
information to these tokens. As result of this timing model, expanding the instantiating node
(replacing it by its graph definition) does not modify the timing behavior of the graph.

During the graph execution a minimum timing constraint is violated if a token resides
shorter on the (timing) edge than the specified interval, a maximum timing constraint is
violated if a token resides longer on the (timing) edge than the specified interval.

Note that such a graph execution to reveal timing properties would not reflect real hardware
behavior: The data flow graph is still a maximal parallel representation, and the presented
execution scheme hence assumes unlimited hardware resources. Only after the architectural
synthesis is completed, scheduling and module allocation results would allow a simulation
based on a hardware structure. The extension of incorporating the results of scheduling and
allocation in the DFG, is outside the scope of (this release of) this manual.

- 7 -

4.6 Ripple delay

To refine the tming model in the DFG an extension is made to use information regarding
ripple delays as found in many arithmetic operations. A ripple delay is defined as the time
interval that elapses between the generation or use of successive bits in a bitvector,

generated by or used in an operation. The influence on the timing of operations is illustrated
in Figure 13. and Figure 14.

DFG caption Module activity

msb data bits Isb

4. adder

time

bitwise and
width = 1

comparator

Figure 13. Timing without ripple delay

The timing properties of the graph with ripple delays is defined by describing the timing
information (conceptually) stored in the data tokens and their firing rules. In thew previous
section it was described that tokens do carry the time point of their creation. When ripple
delay is added to (some) nodes, the tokens also obtain a ripple delay value.

Suppose a token is available at each input of a node which has a ripple delay statement
attached, T is the maximum of the timepoints in these tokens, A is the maximum of the ripple
delay values in these tokens, dis the node delay, § is the node ripple delay, and finally wis the
width of the outgoing data edge. Now the node creates an output token on the outgoing edge
at (with) timepoint T+d—(w—1)xd, and with a ripple delay value of max(A, 8). In words: the
output token obtains a time point which corresponds to the availability of the least

significant bit. The availability of the higher order bits is denoted by the ripple value in the
output token.

4. Timing
DFG caption

\ width = 8
delay =9

e ripple—delay = 1

width =8
delay =1
e ripple—delay =0
width =8
delay =9
e ripple—delay = 1
width = 1

Module activity

msb databits Isb

Figure 14. Timing with ripple delay

If a node cannot cope with the delayed arrival of the higher order bits, this is indicated by not
specifying its ripple delay statement. This causes the node execution to wait until all bits are
available. Suppose each input token has a timepoint T, aripple delay Ai, and width Wi, and d
is the node delay, the output token obtains the timepoint d+max(Ti+(Wi-1)xAi)) and ripple
delay value of 0. Thus be aware that specifying a zero ripple delay is intentionally different

from not specifying it.

- % -

adder
bitwise and

comparator

5. Textual Format for the Data Flow Graph

5.1 A flexible format

For an easy interface to various programming languages, we propose a text (ASCII) based
format. This has the additional advantage of easy transfer between different machines. The
Lisp and EDIF syntax style using a pair of braces for each keyword ensures simple parsing:
any LL-1 parser is strong enough, such as a recursive descent parser scheme. It furthermore
allows for local and future extensions to the format, without disturbing already existing
software (both upwards and downwards compatibility), and does not require a set of
reserved words, forbidden as identifier.

The basic format is very simple: every object is represented as a list. Any list starts with an
opening brace and a keyword on which the application determines its interest in the list. The
items of the list are names, numbers and other lists, and the list is terminated with a closing
brace. If an application is'not interested in the information attached to the keyword —or does
not recognize the keyword- it can and should skip this list without knowing anything about
its (structured) contents by just counting braces.

Of course for successful exchange of data flow graphs between various systems a minimal
subset of required data, keywords and type names must be agreed upon. However every
tool/site is free to add more data for its own purpose. If project partners make such local
extensions which might be useful to others as well, effort must be started to agree on their
use.

5.2 Lexical analysis

For the lexical analysis of the input text the following rules can be stated:

e Socalled 'white space’ serves as delimiter, and consists of one ormore of the following
characters: space * ’, tab "\t’, linefeed "\n’, carriage—return "\r’, and formfeed "\f’. All
keywords, names and numbers have to be separated by white space. The previous
release of this manual stated that no white space was required around '’ and ’)’.
However from now on, we strongly advise to create white space around identifiers.
In future releases this will probably become mandatory, and files without such spacing
might become impossible to read with future lexical analyzers. The reason for
demanding white space is that it both eases (speeds up) the lexical analysis as well as
removes unnatural restrictions on identifier syntax.

e (Caseis significant, and all text processing and keyword matchingis done case sensitive.

e Comment statements as defined later can appear anywhere as argument in a list, and is
assumed to be removed by the lexical analyzer before matching to the syntax rules is
done by the parser. Comment statements can nest. | |

3. Textual Format for the Data Flow Graph

Comment strings can be added wherever white space is allowed. and is taken as the text
starting with a semicolon ’;” and terminating at the end of the line (the occurrence of the
newline character "\n’). From now on, we strongly advise to insert whitespace before
the leading semicolon. In future releases this will probably become mandatory.

Keywords which follow the '(’ consist of sequences of upper and lower case letters

a’-’z’, digits '0’~’9’, minus '-’, and underscore ’_’. They start with a letter and have
maximum length of 31.

All names (identifiers) consist of a sequence of upper and lower case letters, digits, and
the characters _— @(]+*43%!?&~/,.<>=: Identifiers have no upper limit on their
length, and all characters are significant. No reserved (forbidden) words exist. In future
releases the spelling of identifiers will probably be extended to contain all printable
ascii characters, not starting with ’(’ or’;’. This would make both reading and writing of
the format easier and faster. Note that numbers are legal identifiers. Their interpretation
as numeric value or as ider;iiﬁer name depends upon context.

Decimal numeric (integer and floating point) values have equal syntax as in the C
programming language. Hexadecimal numbers have a leading *0x’ (Digit zero, letterx)
followed by a sequence of hexadecimal digits (0’9", A’~’F’, ’a’-’f"). Octal numbers
have a leading *0o’ (Digit zero, letter o) followed by a sequence of octal digits ("0°"7").
Hexadecimal and octal numbers cannot have an attached sign, nor have a fractional part
or an attached exponent. However if they are used as data values (constants) in the data
flow graph, there bit pattern is inserted and the corresponding numeric value depends
upon the locally declared data type.

No limits are imposed on a maximum line length.

The unrestricted style of identifiers (all printable characters, unrestricted length, noreserved
words) is chosen to simplify the translation of other languages into this format.

5.3 The meta syntax

The syntax definition used in the next section obeys the following rules:

If a constructis in square brackets ’{]’ itis optional, if itis enclosed in curly braces ’{ } it
may be repeated zero or more times. Curly braces followed by a ’+’°, indicate a
repetition of at least one time. Ordinary braces ’()’ are used for grouping only.

The vertical bar ’I’ separates one of two alternatives.

19%2

Text appearing between a pair of double quotes ", is to appear literally in the format.
Lists headed by a keyword may appear in an enclosing list in any order.
Items between triangular braces ’<>’ are names of syntax production rules.

Each syntax rule definition is terminated by adot ’.” .

The general form of any statement is:

<statement> 1= “(" keyword {identifier | <statement> } “)".

The general rule is that a statement begins with (keyword and is followed by a list of
arguments. These arguments can be szaremenis or basic items such as numbers and
identfiers. These basic items have a fixed position (order). Statements may appear in any
order because they are identified by their keyword.

It is implicitly assumed that any statement allows the comment statement as argument. The
comment statement is identified by the keyword commen:. Thus a comment statement is
build as follows:

<comment-statement> = “(" “comment” { identifier | <statement> } “)".

5.4 The DFG syntax definition

The DFG is now defined by the following syntax rules:

<DFGviews - = (" “dfg-view” [<Design>] {<DataTypeDef>}
{<DataTypeDefault>} {<Graph>}+ “)".

<Design> == "(" "design” <GraphRef> ")".

<GraphRef>* = "(" "graph—ref’ <GraphName> ")".

<DataTypeDef> :="(" "datatypedef’ <DataTypeName> [<DataTypeSpec>]

<WidthDefauit> ")".
<DataTypeName> ::= <identifiers.

All data type names in one dfg-view must be unique.

<DataTypeSpec> ::= <IntegerType> | <FixedpointType> | <BooleanTypes.

<integerType> 1= "(" ("integer—unsign” | "integer—2compl” | "integer—signmagn”)
")!l.

<FixedpointType> :="(" { "fixpoint—unsign™ | "fixpoint-2compl” | "fixpoint-signmagn”
) <FixedpointExp> ")".

<FixedpointExp> := <integers.

<BooleanType> :="(""boolean”")".

<DataTypeDefauit> :="(" "datatype—default” <EdgeTypeName> <DataTypeName>
",

<WidthDefault> :="(" "width-default’ <integer> ")".

<Graph>* = "(" “graph” <GraphName> {<Node> | <Edge>} [<status>]
[<MinCycletime>] [<MaxCycletime>] [<BoundingBox>]")".

<GraphName> ::= <identifier>.

All graph names in one dfg—view must be unique.

<BoundingBox> = *(" “bbox” <XCoord> <YCoord> “)" .
<XCoord> = <integer>.
<YCoord> ::= <integer>.

X—coord and y—coord must be greater than zero.

- 77 -

5. Textual Format for the Data Flow Graph

<status> u="(" "status” { <written> } “)".

<written> = (" “written” <timestamp> <author> <program> “)".
<timestamp> = <identifier>.

<author> = <identifiers>.

<program> :i= <identifiers.

<MinCycletime> :="(" "min—cycletime” <number> ")".
<MaxCycletime> :="(" "max—cycletime” <number> ")".

<Node>"* =="(" "node” <NodeName> <NodeType> [<InEdges>]

[<CutEdges>] [<SelectionList>] [<ConstValue>] [<Varname>]
[<Srcline>] {<Position>} [<ScheduleTimes>] [<ArrayDim>]
[MinDelay] [MaxDelay]")".

<NodeName> 1= <identifier>.

All node names in one graph must be unique.
<NodeType> == "(" "type” <NodeTypeName> “)".
<NodeTypeName> ::= <identifier>.

Node types are either implicitly predefined types or names of graphs defined elsewhere in
the file.

<InEdges> = (" ‘in~edges” { <EdgeName> }+ *)".
<OutEdges> = “(" “out-edges” { <EdgeName> }+).
<EdgeName> ;= <identifiers.

The edge name must refer to an edge definition elsewhere in the graph.
<SelectionList>* = “(" "selection-list” { <integer> }+ *)".
A selection list has meaning for ’entry’, ’exit’, ‘merge’, and ’branch’ nodes only.
<Constvalue>* :="(" “const-value” {<numbers}+ “)".
The const—value attribute has meaning for node types ’constant’, ’array’, ’entry’, and
’delay’ only.
<ArrayDim>* u="(" "array—dim” {<integer>}+ ")".
The array—dim attribute has meaning for node type ’array’ only. The number of integers

determines the number of dimensions. Each integer specifies the size of one dimension, and
must be greater than zero.

<Var-name> 1= (" “vamame” <identifiers> “)".
<Srcline> = "(" “src-line” <identifier> “)".
<Position> s:= (" “position” <XCoord> <YCoord> “)".

X—coord should have a value between zero and the bbox(x—oord), bounds inclusive.Y—
coord should have a value between zero and the bbox(y—coord), bounds inclusive.
<ScheduleTime>* := “(" “schedule—time” <number> “)".

<Edge> = "(" "edge” <EdgeName> <EdgeType> <Origin> <Destination>
[<DataType>] [<Width>] [<Varname>] [<MinDeiay>] [<MaxDelay>]
[«MinTime>] [<MaxTime>] *)".

* These syntax statements are extended in chapter 6. on parameterization.

<EdgeName> 1= <identifier>.

All edge names in one graph must be unique.
<EdgeType> n="(""type" <EdgeTypeName> “)".
<EdgeTypeName> ::= <identifier>.

Edge types are implicitly predefined.
<Origin> == (" “origin” <NodeName> [<Port>] “)".
<Destination> = "(" “destination” <NodeName> [<Port>]*)".

The node names must refer to a node definition elsewhere in the same graph.

<Port> = "(" "port” <PortName> “)".
<PortName> = <identifier>.

Portnames are implicitly predefined for predefined node types. If the referred node has a

type which is defined as graph elsewhere, they must agree with names of input and output
nodes of that graph.

<Width>* < =" “width” <integer> ")".

The width must be greater than zero. The attribute has meaning for edge types 'data’ and
’control’ only.

<DataType>" = (" “data—type” <identifiers “)".

The data type name must refer to data typedef elsewhere in the file. _
<MinDelay> == "(" "min—delay” <Timelnterval> [<RippleDelay>] ")".
<MaxDelay> = "(" "max—delay” <Timelnterval> [<RippleDelay>]")".
<RippleDealy> = "(" "ripple—delay” <Timelnterval> ")".
<MinTime> == "(" "min-time” <Timeinterval> *)".
<MaxTime> u="(" "max—time” <Timeinterval> ")".
<Timelnterval> = <Asyncinterval> | <Syncinterval> .
<Asyncinterval>* :="(""async” <number> ")".
<Syncinterval>* ::="(""sync” <integer> [<LeadDelay>] [<TailDelay>] ")".
<LeadDelay>" :="(""lead—delay" <number> [<ClockPhaseld>]")".
<TailDelay>* = "(" "tail-delay” <number> [<ClockPhaseld>] ")".

<ClockPhaseld>* := <integer>.

The definition starts with the definition of a view for the set of data flow graphs. At file scope
data types are defined. The design statement indicates which graph is to be taken as the
current object of design and the root of the hierarchy. The graph has a name, a set of nodes

~and a set of edges. The names of the graphs in one view must be unique, and can be referred

to as nodetype in another graph for instantiation. For each node its incoming and outgoing
edges are specified. Other attributes are a node—name to identify the node and a type to
describe which operation is performed by the node. Two attributes are added to find the

* These syntax statements are extended in chapter 6. on parameterization.

- 29 —

3. Textual Format for the Data Flow Graph

correspondence between the graph and its original (user—contributed) algorithmic
description in another language: the src—line gives the line number of the source code where
an operation was described and the varname describes the output variable of the node. These
last two attributes are especially useful to inform the user about the graph. (for example in
generating €ITor messages).

For each edge its origin node and destination node are specified. Optionally port names can
be attached here, required to distinguish between the inputs of noncommutative operations
or between the outputs of multioutput operations. Further attributes are an edge—name to
identify the edge and a rype to give the edge its type. The varname attribute is used to relate
the edge to a variable name used in the input specification.

More graphs can be described in a single file by listing several graphs in one file.

Attributes concerning the author, source program, date etcetera are optionally collected in
the status field.

5.5 Predefined node types
For a useful DFG exchange, a set of node types and their semantics must be agreed upon.

For the arithmetic operators we adopt the C language notation as type name. All these 'C’
operators have only one output port (to which of course multiple edges can be attached). The
commutative operations are assumed with an undetermined number of inputs, but at least
two. For these operations port names are not explicitly defined, since there is no need to do
so. The non—commutative operations are defined for two inputs, with their input port names.
The unary numeric negate operation has obtained type 'neg’ to distinguish it from the dyadic
subtract operation with type '-’. If a *boolean result’ is specified for the operations, this
means that the result of the operation (the output token) has a numeric value of either 0
(false) or —1 (true).

The predefined node types are:

Numeric operations:

+ numeric addition, undetermined number of inputs.

* numeric multiplication, undetermined number of inputs.

/ numeric divide, two arguments, input ports ’left’ and 'right’.
% numeric modulo, two arguments, input ports ’left’ and ’right’.

- numeric subtract, two arguments, input ports 'left’ and 'right’.
neg numeric negation, one argument.

++ numeric increment, one argument.

— numeric decrement, one argument.

== comparing its arguments, numeric or bitvector, boolean result, undetermined
number of inputs.

const

comparing its arguments, numeric or bitvector. boolean result, undetermined
number of inputs.

comparing two numeric arguments, boolean result, input ports ’left’ and 'right’.
comparing two numeric arguments, boolean result, input ports ’left’ and 'right’.
comparing two numeric arguments, boolean result, input ports ’left’ and 'right’.
comparing two numeric arguments, boolean result, input ports "left’ and ’right’.

Gives a constant as result on its output, one input to activate token firing. The
incoming edge should have type ’source’. If the constant value is-specified as
decimal value, the result has always its numeric value defined. If the constant
value is specified as octal or hexadecimal value, the result has always its bitvector

defined. If the outgoing edge has a data type attached, both the bitvector and
numeric value are known of course.

Bitwise operations:

I
&&
&

<<

>>

rotl

Totr

unary or, or-ing all bits of its single input bitvector, boolean resuit.
unary and, and-ing all bits of its single input bitvector, boolean result. I
bit wise and, undetermined number of bitvector inputs.

bit wise or, undetermined number of bitvector inputs.

bit wise exclusive or, undetermined number of bitvector inputs. B
bit wise negation, one bitvector input.

shift left, two arguments, 'left’ input port taken as bitvector, 'right’ input port
must be an integer (numeric) value. Shift in bits valued *0°.

shift right, two arguments, "left’ input port taken as bitvector, ’right’ input port
must be an integer numeric value. Shift in copies of the most significant bit of the
left input word if the left input edge has data type "two—complement’ and the shift
distance is a positive value, otherwise shift in ’0’ bits.

rotate left (from the least significant bit in the direction of the most significant
bit), two arguments, input ports ’left’ (the data word to be rotated) is taken as
bitvector, and ’right’ (the shift distance) which must have some integer datatype. J}

rotate right (from the most significant bit in the direction of the least significant
bit), two arguments, input ports ’left’ (the data word to be rotated) is taken as
bitvector, and ’right’ (the shift distance) which must have some integer data type. |}

bit—concatConcatenates the bits of the bitvector input words. One output and an

undetermined number of input ports named “0”,“1”, The order of catenation is
such that the most significant bit of input '0’ comes next to the least significant bit
of input ’1’, etcetera. The width of the inputs and outputs is set in the connected
edges. It is assumed that the output width is the sum of the input widths.

bit—merge Three input ports ’data’, 'new’, and ’offset’, and one output. Replaces some bits

of the "data’ bitvector input by new bits from the 'new’ bitvector input. The bits

5. Textual Format for the Data Flow Graph

are selected in the ’data’ word by an "offset’ numeric input. The value of the
"offset’ token (integer > 0), indexes the *data’ word, such that the least significant
bit is numbered '0’. The thus indicated bit in 'data’ is replaced by the least
significant bit of the ‘new’ input; the next higher bit of "data’ is replaced by the
next bit of ‘new’, etcetera, for the full length of the 'new’ input. The width of the
arguments is setin the attached edges. It is assumed that the width of the output is
equal to the width of the ’data’ input, and that the "new’ input has smaller width
than these.

bit—select selection of a bit range from a variable (bus). One bitvector input "data’ and one

numeric input 'offset’. The value of the ’offset’ token (integer > 0), indexes the
input word, such that the least significant bit is numbered ’0’. The least
significant bit of the output word corresponds to bit 'offset’ of the input word.
Note that the width of input and output data are determined by the connected
edges, where the output width is assumed smaller than the input data width.

Control nodes:

branch

merge

entry

exit

To build ’if-then—else’ constructs, see section 2.5. Two inputs ’data’ and
"control’, multiple outputs named ’0’#’1°, ’2’, ... Because one incoming edge
should have type ’control’; the input port names are optional to use. A selection
list is given for each branch node. This is an ordered list of all different data
values. The value of a data token arriving at the control input is compared with
each value in this list. The index of the matching value*, defines the output port
which will receive the token from the data input.

To build ’if-then—else’ constructs, see section 2.6. One output port ’data’,
multiple input ports named ’control’, ’0°, ’1’, ... The edge connected to "control’
should have type "control’. A selection list is given for each merge node. This is
an ordered list of all different data values. The value of a data token arriving at the
control input is compared with each value in this list. The index of the matching
value*, defines the input port which will receive a token to pass to the data output.

To build loop constructs, see section 2.7. One output port *data’, multiple input
ports named ’control’, ’0’, *1”, ... The edge connected to ’control’ should have
type "control’. A selection list is given for each entry node. This is an ordered list
of all different data values. The value of a data token arriving at the control input
is compared with each value in this list. The index of the matching value*, defines
the input port which will receive a token to pass to the data output.

Tobuild loop constructs, see section 2.7. Two inputs *data’ and "control’, multiple
outputs named '0’, ’1’, ’2’, ... Because one incoming edge should have type
“control’, the input port names are optional to use. A selection list is given for

*

Comparison for (in~)equality is legal for both numeric values and for bit vectors. If data types and

widths are defined, values and bit vectors can be converted in to each other, and then the comparison
must be done for the bit vectors, as normal for all operations. Thus the data value in the selection list is
converted to a bitpattern according to the data type and width of the control edge, and then compared
with the control token. This implies for instance that a control edge of type two—complement integer of
width 1, will match the numeric values ’1’ and ’-1’ as equal.

delay

each exit node. This is an ordered list of all different data values. The value of a
data token arriving at the control input is compared with each value in this list.
The index of the matching value*, defines the output port which will receive the

- token from the data input.

an operation which actually does nothing. It might be used for just adding
precedence or timing relations, with an undetermined number of inputs (> 1):
The operation waits until a token is available on each input, and then generates
some output token. Howeverits real semantics with respect to token data values is
ONLY defined for its usage with a SINGLE input edge. In this case it passes the
input token —with its value- to its output port. In this situation the node might be
used for structuring of edges, for whatever reason. No restrictions apply to the
type of edges which attach to this node.

The delay node has one ’data’ input and one ’data’ output port. Any token arriving
at the input is just passed to the output port. However a ’const-value’ statement
can be attached to this node, containing a list of values. All these values are —in
order— made available as tokens on the output port at initialization time. Hence
new tokens arriving at the node input are queued behind this list. As result, this
node can be used to obtain access to data values from previous executions of the
graph (previous cycles of the implicit external loop).

Input and output:

get

put

input

output

To read data from external ports, see section 2.8. One input to activate the reading
process, thereby producing an output token on its single output port. The input
edge should have type ’chain’, there must be precisely one output edge of type
’chain’, besides the normal outgoing data edges. ‘

to write data to external ports, see section 2.8. Two input ports named ’enable’ and
’data’, one output port named 'enabled’. The edge connected to ’enable’ is used
to activate the reading process, and should have type ’chain’. The (single) edge
connected to ’enabled’ must also have type *chain’, and is used to start the next
1/O operation on the same external port.

input interface node for any graph. Its node name serves as port name when this
graph is called (instantiated) in another graph. No input ports, one output port.

output interface node for any graph. Its node name serves as port name when this
graph is called (instantiated) in another graph. No output ports, one input port.

Array operations:

array

declaration of an array, see also the general description in section 2.9. One input
port 'source’, used to ’activate’ the array declaration and initialization, an edge of
type ’source’ should be attached to this port. Outgoing ’chain’ type edges provide
access to and specify a (partial) ordering of all update and retrieve operations
accessing this array. These ’chain’ edges don’t have port references. The array
dimensionality and its size in each dimension must be specified. An initialization

3. Textual Format for the Data Flow Graph

retrieve

update

with (constant) values is optional. This linear sequence of constant values is
written in the array with ’highest index running fastest’ order. If too few values
are specified, the rest is left initialized, if too many values are specified, the
excess values are ignored.

read access to a value of an array, see also the general description in section 2.9.
This node has input ports implicitly named ’0’, ’ 17, ... used to connect incoming
edges to index the array (address one element), which is written at the output port
named ’data’. The node has furthermore one or more incoming and zero or more
outgoing edges of type 'chain’, to connect and order the read and write operations
on the array. The port names '0°,’1’, ... and ’data’ must be mentioned explicitly
on its connected ’data’ edges, the ’chain’ edges cannot have an explicit port
indication. The data values to index the array must have nonnegative integer
values.

write access to a value of an array, see also the general description in section 2.9.
This node has input ports implicitly named ’0’,’1’, ... used to connect incoming
edges to index the array (address one element). At this index the array is updated
with the value read from the input port named ’data’. The node has furthermore
one or more incoming and zero or more outgoing edges of type "chain’, to connect
and order the read and write operations on the array. The port names ’0’,’1’,
and ’data’ must be mentioned explicitly on its connected ’data’ edges, the ’chain’
edges cannot have an explicit port indication. The data values to index the array
must have nonnegative integer values. '

5.6 Predefined edge types

data

control

chain

The ’default’ type for edges involved in data transfer. A data edge can haveadata
type and a width attached. ‘

Edges of type control are always connected to the 'control’ input of branch,
merge, entry or exit nodes. Its use is to be able to distinguish these edges from the
"data’ type, for synthesis or drawing reasons, although they behave identically.
These edges will connect all branch and merge nodes of one ’if* statement or all
entry and exit nodes of one loop statement to a single node generating the control.
In the resulting hardware these edges will often lead to wiring from a ’controller’
module. A control edge can have a data type and a width attached.

Any chain edge belongs to a sequence that serially links all put and get nodes that
operate on one physical external communication port. Note that this chain should
go through branch, merge, entry, and exit nodes and procedure instantiations if
get and put nodes are inside these constructs. Each such chain should start at an
’input’ node and terminate at an "output’ node.

Also used to connect together and define a partial order between between ’array’,
‘retrieve’, and ’update’ nodes, forming a connected acyclic graph with these
nodes. In the array specification, ’input’ and ’output’ nodes are not involved, but
these chains can also go through branch, merge, entry, and exit nodes, and
procedure instantiations if retrieve and update nodes are inside these constructs.

source input edge to a node of type "constant’ needed to enable the ’firing’ of its output
token containing its constant value, or input edge toa node of type "array . needed
to activate its initialization and firing of tokens on its "chain’ outputs.

uming These edges are used to enforce a required timing or execution ordering on the
nodes in the DFG. For this purpose they can have a "delay’ statement, prescribing
a (minimal) time difference between the completion of its originating and start of
its destination node.

Other operations:

All other node types encountered are assumed to be instantiations of graphs defined
elsewhere in the file. The node type name must hence correspond to the graph name. The
ports of the node at instantiation must correspond with the input and output nodes of the
graph. Note that the previously listed predefined nodes do not create a reserved or illegal set
of graph names: They are also legal graph names, allowing the redefinition of standard
operators.

0.

6.

6.1

Paramererization

Parameterization

Introduction

The chapter on parameterization is new in this release. Therefor comments on desired
improvements and modifications are welcome.

The need for parameterization in the DFG format was apparent for some time already. The
two main reasons for this are:

Actual parameter assignment at the nodes of a graph is necessary to direct or control the
generation of hardware operators.

It should be possible to define a graph which is parameterized for (at least) the width of
its edges.

Parameter passing concepts can l¢ad to an enormous amount of extra syntax and constructs
in a language. We felt that the DFG as exchange format, in contrast to a user interface
language, would be better served with a syntactically Tninimal but still general enough
scheme. Due to the keyword driven nature of the DFG format, extension remains possible of
course. These considerations based the following choices:

Nodes can have attached actual parameter assignments.

Graphs can have formal parameter declarations. Together with the paraméter
assignment at nodes, this allows passing of parameters through a hierarchy of DFGs.

Various places where only a constant number or identifier was allowed, now allow an
expression. If for example a graph has a parameter w, some edges can have assigned a

width w, others a width w+1 or wx2. For now only a small set of expression operators is
defined.

Parameters do not have a data type nor a structure. This greatly simplifies
implementation. Whatever is assigned to a parameter, is just inserted when the
parameter is used.

Parameters are local to the graph where they are declared. Their names are unique in

each graph. Therefor no scoping rules supporting concepts as name hiding need to be
implemented.

Parameters cannot influence the connection structure of a graph. They cannot lead to
deletion or insertion of edges or nodes.)

6.2 Extended syntax

The extension of the format is now defined as:

<GraphRef> = "(" "graph-ref” <GraphName> {<ParamAsg>} ")".

- 36 —

<Graph>

<ParamDeci>
<ParamName>

== "(" "graph” <GraphName> {<Node> | <Edge> | <ParamDeci>}
[<status>] [<BoundingBox>]")".

»="(" "param-dec!” <ParamName> <ParamDefaultValue> ")".
.= <identifier>.

Parameter names are unique in a graph. They do not interfere with other names.

<ParamDefaultValues::= <identifier>;

Note that numbers are also identifers. Their interpretation as number depends upon context.

<Node> == "(" “node” <NodeName> <NodeType> [<InEdges>]
[<Out-Edges>] [<Selection—List>] [<ConstValue>] [<Varnames]
[<Src-line>] {<Position>} [Schedule—time] [<Array—dim>] [Delay]
{<ParamAsg>} ")".

<ParamAsg> = "(" "param-asg” <ParamName> <Expr> ")".

<SelectionList> :i="(" “selectionist” {<Expr>}+ “)".

<Constvalue> ,:=*(” “const-value” {<Expr>}+)"

<ArrayDim> =" "array—dim” {<Expr>}+)"

<ScheduleTime> = “(" "schedule-time” <Expr> “)".

<Width> ="(" "width” <Expr> *)".

<DataType> = "(" "data—type” <Expr>“)".

<Asyncinterval>
<Syncinterval>

= "(" "async” <Expr> ")".
"(" "sync” <Expr> [<LeadDelay>] [<TailDelay>] ")".

<LeadDelay> :="(""lead~delay” <Expr> [<ClockPhaseld>]")".

<TailDelay> = "(" "tail-delay” <Expr> [<ClockPhaseld>] ")".

<ClockPhaseld> = <Expr>.

<Expr> := <identifier> | <ParamEval> | <MonadicExpr> [<MultiadicExpr>.
<ParamEval> :="(" "evaluate” <ParamName> ")".

<MonadicExpr> = "(" ("negate” | "fix") <Expr>")".

<MultiadicExpr> ::="(" ("sum” | "subtract” | "product” | "divide” | "mod" | "min” |

"max”) {<Expr>}+)"

Note that we have not yet defined boolean operations in expressions, bitwise logical
operations or string operations. Of course these are easily added if so desired.

Because parameters do not have types (integer, number, string) defined by syntax,
expressions are also not typed. The notion that “data—type” expects aname as argument, and
“array—dim” expects positive integers as argument is hence lost in the syntax. These
restrictions can be seen in section 5.4 where the syntax was initially defined.

Specifying a default value for parameters is mandatory. As result a graph is always a
meaningful object of its own. Actual parameter assignments of course override this default,
and do not need to specify all declared parameters.

The expression operations are inspired by the EDIF version 2.0.0 ANSI/EIA standard, and
numerically defined as follows:

- 37 -

0. Parametrerizarion

negate Performs the numeric negation of its argument, multiplies with —1.

fix Truncates its numeric argument to an integer, in the direction of 0.
For example 2.3 and 2.9 are both converted to 2, and —1.91is
converted to —7.

sum Performs the numeric summation of its arguments.

subtract TIW2C0G2Gf0'7BGUAWY V BGU BE7V'G&U7G2CUE7V'BWUVV BCUAWV V G(
from it.

product Multiplies all its arguments.

divide . Takes its first arguments and divides it by all subsequent
arguments. It can produce a fractional result from integer

, arguments.
mod Takes its first argument, and performs the modulo operation with

all subsequent arguments. All arguments must be integer and the
result is integer. If r=(mod a b)and d=(fix (divide a b))then
a=(sum '(product b d) rjand (thus) r has the same sign* as a.

min Returns the minimum value of all its arguments.
max Returns the maximum value of all its arguments.

* Be wamed that the C language leaves the sign of the % operator implememﬁu'on dependent.

7. Possible Extensions

The discussion on future or desireful extensions is always required to maintain a high quality
and up to date standard, serving every site as good as possible.

In Eindhoven we will very soon start to use extensions of this DFG format, which annotate
the results of scheduting and allocation in the data flow graph. This will be done by adding
with each data flow graph a ‘control graph’ —defining a controller finite state machine—and a
‘network graph’ —specifying the resulting network after module allocation—. If these
extensions are acceptable and thought useful by others, they would open up the exchange of
individual synthesis tools from the project partners, and hence allow a much tghter
cooperation in the project. Such extensions are now in the (software) development stage.
The corresponding extension fo the format might initially appear as appendix to this manual.

Although the extension with data types is alarge step in the direction of defining a bit-level
behavior of the data flow graphs, a bit—wise definition of theoperation nodes in the graph is
- still missing. Although the numerical types-and their bit patterns do define the 'normal’
numerical behavior up to the bit level, exception handling for conditions as overflow are not
standardized. By now we assume that each site —or even each design— has such a bit-level
definition of the operators, which is supported by simulation and module synthesis. Fixing
the behavior to a single definition is unacceptable, denying real ASIC design. Alternatively
a method for exchanging the bit-level behavior might be thought of. However the support of
such in site dependent module generators is doubtful. :

For real intensive local use of the data flow graph format, a library mechanism is
indispensible. A formal introduction of a library concept should be made.

- 39 —

8. Support Tools

8. Support Tools

8.1 Introduction

The Design Automation section at the Eindhoven University of Technology makes
available a few tools to support the use of the data flow graph format as presented in this
document. Since this is just starting, both the choice of tools and their functionality is
growing. For up to date information, contact the authors of this document.

82 Graph drawing

For relatively small algorithms, the text of the DFG definition will grow already quite large.
It appears that manual inspection of this text to determine the graph structure is a very
tedious job. For debugging and-illustration purposes we have felt an immediate and strong
need for a drawing capability.

A placement procedure tries to generate a "nicely looking’ placement of the DFG nodesin an
x/y—plane. The result of this process of course depends upon the intelligence of the program,
and the personal taste of its designer. The placement result is added to the graph by a
‘position’ statement in each node, and a ’bounding box’ statement for each graph. It is
assumed that all node positions are inside the box formed by [0,0] and the coordinate pair in
the bounding box statement.

A drawing procedure subsequently maps the (with coordinates annotated) graph into some
graphic representation. Here different drawing programs can for instance generate a
postscript output file, an (X-) window screen image, or a specialized input format for some
text processor (Interleaf, Framemaker, (di-)troff, TeX, etcetera).

By extending the format with the placement information these two functions can reside in
different programs.

A tool is available which can read the DFG format, generate a placement, and draw a picture
in an Xwindow environment with a MOTIF style user interface. It can dump the DFG format
again with the placement added. Extensions are planned to write different graphic formats.

8.3 Graph verification

A tool is available which performs many checks on a DFG format. Performed checks are:

o Use of node types: either predefined or graph instantiations

e Use of edges: allowed edge type versus port name combinations. Too many or too few
edges in or out of any node.

e Use of port names: proper use of port names on both predefined nodes and graph
instantiations.)

¢ Proper structuring of branch—merge and entry—exit constructs, selection lists.

¢ Absence of cyclic constructs besides the entry—exit constructs.

Besides error messages the program can create a drawing of the graph in postscript.

8.4 Skeleton parser

For building local interfaces to this DFG format, a skeleton parser and writer are available.
Two different versions exist for the languages C and C++-

8.5 Synthesis tools

The group in Eindhoven has a set of programs which together form the EASY synthesis
system. This system contains for instance scheduling, allocation, module selection, and
various graph optimization functions, and the generation of these graphs from a HardwareC
behavioural specification. These are in principle all available*.

* The HardwareC software is subject to licensing from Stanford University, California.

Y. Example
9. Example

9.1 Introduction

This chapter presents a small but full example of a data flow graph according to the previous
chapters. It starts with a small and artificial program to compute the greatest common
divider of two positive integer numbers. Three representations are presented: A sequential
program, a drawing of the resulting data flow graph, and finally the full listing of the
corresponding textual format. Although the example is too small to display many features, it
does show the usage of node types, edge types, port names, the structure of a while loop, and
a procedure call.

9.2 The program

GCD(int a, intb) subtract(int n, int d)
{ inth; : { while (n>=d)

while (b 1= 0) n=n-d;

{ h=b; return(n);

b = subtract(a, b); }
a=h

}

return(a);
}

9.3 The resulting graph

Figure 15. GCD Figure 16. Subtract

- 4 -

9.4 Its textual representation

(dfg—view
(design (graph-ref gcd))
(graph gcd
(status
{written 91/04/18-15:19
jos@es.ele.lue.nl EASY)

)

{node N-16 (type entry)
(in—edges E-27 E-44 E-43)
(out—edges E-42 E-20 E-21)

)

{edge E—42 (type data)
(varname b}
(origin N-16)
(destination N-33)

)

(edge E-20 (type data)
(varname b)
(origin N-16)
(destination N-17)

)

(edge E-21 (type source)
(origin N—186)
(destination N—18)

)
(node N-17 {type !=)
(in—edges E-22 E-20)
(out—edges E—44 E—41 E-37 E-34)

)
(edge E—44 (type control)
(origin N=17)
(destination N—-16 {port control))

)
(edge E-41 (type control)
{origin N-17)
(destination N-33 {pornt control))

)
(edge E-37 {type contirol)
(origin N-17)
(destination N--31 (port control))
)
{edge E-34 (type control)
{origin N-17)
{(destination N-30 (port control))

)

(node N-33 (type exit)
{(in~edges E-42 E-41)
{out—edges E-38 E-23)

)

(edge E-38 (type data)
(varname a)
(origin N-33 {port 1))
(destination N—31 (port 1))

)
_ (edge E~23 (type data)
~ (varname b)
{origin N-33 (port 1))
(destination N-21 (port d))

— 43 —

)

(node N-18 (type const)
{const-value Q)
(in—edges E-21)
(out-edges E-22)

)

(edge E-22 (type data)
(origin N-18)
(destination N-17)

)

(node a (type input)
(varname a)
(out—edges £E-36)

)

(edge E-36 (type data)
{varname a)
{origin a)
{destination N-31 (port 0))

)

{node b (type input)
(varname b)
(out-edges E—43)

)
{edge E—43 (type data)
(varname b)
(origin b)
(destination N-16 (port 0))
)
(node return (type output)
(varname a)
{in—edges E-55)

)

(node N-21 {type subtract)
(in—edges E-25 E-23)
(out—edges E-27)

)

(edge E~27 (type data)
(origin N—21 (port return))
{destination N-16 {port 1))

)

(node N-30 (lype exit)
(in—edges E-35 E-34)
{(out—edges E-25 E-55)

)

(edge E-25 (type data)
{varname 2a)
{origin N-30 (port 1))
{destination N-21 {port n))

)

(edge E-55 (type data)
{varname 3)

{origin N—30 (port 0))
(destination return)

)

(node N-31 (type entry)
(in—edges E-38 E-37 E-36)
{out—edges E-35)

)

Mo LALINPIC

(edge E-35 (type data)
(varmmame a)
(origin N-31)
(destination N-30)
)

)
(graph subtract
(status
{(written 91/04/18-15:19
jos@es.ele.tue.ni EASY)

)

(node d (type input)
(out—edges E-13)

)

(edge E~13 (type data)
(varname d)
(origind)
(destination N—4 (port 0))

)

(node n (type input)
(out-edges E-6)

)

(edge E~6 (type data)
(varname n)
{origin n)
(destination N-2 (port 0))

)

{node retumn (type output)
(in—edges E~17)

)

(node N-2 (type entry)
(in—edges E-8 E-7 E~-6)
(out-edges E~5 E-0)

)

(edge E-5 (type data)
(varname n)

(origin N-2)
(destination N—-8)

)
{edge E-O (type data)
{varname n)
« (origin N-2)
(destination N-3 (port left))

)
{node N-3 (type >=)
(in—edges E-1 E-0)
(out—edges E-14 E-11 E-7 E-4)

)
(edge E-14 (type controi)
(origin N-3)
(destination N—4 (port control))
)
- {edge E-11 {type control)
(origin N-3)
(destination N-11 (port control))
)
(edge E-7 (type control)
(origin N-3)
{(destination N-2 {port control))

)

(edge E—4 (type control)
(origin N-3)
(destination N-8 {port control))

)

(node N—4 (type entry)
(in—edges E-15 E-14 E-13)
(out—edges E-12 E£-1)

)

(edge E-12 (type data)
(varname d)

(origin N—4)
{destination N-11)

)

(edge E-1 (type data)
{varname d)

{origin N—4)
{destination N-3 (port right))

)

(node N-6 (type -)

(in—edges E-16 E-9)
{out—edges E-8)

)

(edge E-8 (type data)
(varname nj
(origin N—6)

(destination N-2 (port 1))

)

(node N-8 (type exit)

{in—edges E-5 E-4)
{out—edges E-S E-17)

)

(edge E-9 (type data)
(varname n)
(origin N-8 {port 1))
{destination N-6 (port left))

)

(edge E-17 (type data)
{varmame n)
{origin N-8 (port 0))
{destination returmn)

)

(node N-11 (type exit)
(in—edges E-12 E-11)
(out-edges E-16 E~15)

)

(edge E-16 (type data)
{varname d)
{origin N—11 {port 1))
(destination N-6 (port right))

)

(edge E-15 (type data)
(varname d)
{origin N—11 {port 1))
(destination N—4 (port 1))

)

10. Epilogue

This release of the manual described two important extensions to the DFG standard: data
types and parameterization. We believe that we succeeded in developing well defined and
general concepts for these, which can easily be extended maintaining both upwards and
downwards compatibility. Smaller extensions were the introduction of multidimensional
arrays, and a 'delay’ node. These extensions should serve the most direct needs. Of course
such discussions should be continued to maintain satisfactory cooperation in the future.

Compared with the previous manual, the text was extended and refined at many points.
Furthermore several figures were added to clarify the intentions. This effort will hopefully
help in a better understanding and acceptance of the standard.

We strongly believe that our ASCIS data flow graph exchange format has several
unsurpassed qualities which make it worldwide unique. It is now to the project partners to
grab this advantage and make it a benefit for the project as a whole.

Jos van Eijndhoven
Leon Stok

Gjalt de Jong

— 45 —

1. Index

11. Index
A

array, 11, 12, 28, 33, 37
ascii, 25
ASCIS, 1, 45

B

bit fields, 14

bit pattern, 14, 15, 18, 39

bitvector, 23
boolean, 6, 14, 16
bounding box, 40
braces, 25

C

case, 25

case—of, 7

clock, 9, 20, 37

comment
statement, 25, 27
string, 26

communication, 10

complexity, 3

constant, 11, 15, 18, 26, 28,

33, 35, 37
cycle, 8, 12, 41

D

data flow graph, 1

data type, 14, 26, 27, 29, 37

boolean, 16
fixed point, 16
integer, 15
data width, 14
decimal number, 15
delay, 20, 35, 37
maximum, 29
minimum, 29
ripple, 23, 29
specification, 21
delimiter, 25
design, 29
drawing, 40

E
edge

chain, 10, 11, 18, 33, 34
control, 6, 32, 34
data, 34
property, 14
semantics, 4
source, 5, 18, 33, 35
timing, 18, 35
type, 29, 34, 37, 40
width, 17
ELLA, 1
error message, 30
evaluation, order of, 4
execution, 4, 5,9, 10, 12
exponent, 16
expression, 36, 37
extension, 25, 39
external world, 10

F

file, 14, 29
fixed point, 16
for—do, 7
format, 1, 25

G

goals, 1
graph, execution, 5
graph name, 35

H

hardware, 12, 14
Hardware C, 1, 41
hierarchy, 29, 35

I

identifier, 26, 36
if-then—else, 7, 32
initialization, 9, 12

instantiation, 5, 12, 22, 29,

33,35

integer, 14, 15
interfaces. |

K

kevword, 235, 26

L

lexical analysis, 25
library, 21
loop construct, 7

M

multirate, 10

N

node
-armay, 11, 12, 33
bit operations, 31
branch, 6, 32
constant, 5
control, 32
delay, 12, 33
entry, 7,32
exit, 7, 32
get, 10, 33
input, 5, 10, 33
merge, 6, 32
noop, 33
numeric operations, 30
operation, 4, 39
output, 3, 10, 33
position, 40
predefined types, 30
put, 10,33
retrieve, 11, 34
semantics, 4
type, 4, 30, 40
type name, 5
update, 11, 34

number, 26
decimal, 26
hexadecimal, 26
octal, 26

numeric, 15

O

operation, 4, 30
opumization, 2, 41
ordering, 11

P

pad, 10
parameter
assignment, 36
data type, 36
declaration, 36
default value, 37
parameterization, 36
parser, 25, 41
parsing, 2
port, 4
control, 6
name, 5, 40
physical, 10
width, 17 -
-postscript, 40
procedure, 5, 10, 12

R

records, 14
references, 1, 4

S

selecton list, 6, 9, 37
semantcs, 4, 20
semicolon, 26

signed magnirude. 16
Silage, 1

simulation, 12, 14
source, 3

state, 12

subgraph, 5

support, 40

syntax, 25, 27
synthesis, 1, 20

T
text, 25

time, 12, 20
asynchronous, 20, 37
constraint, 20
interval, 20, 29, 37
max constraint, 29
min constraint, 29
model, 22
synchronous, 20, 37
violation, 22

timing, 9, 35

token, 4
multiple, 4, 10

- 47 -

queue, 4, 33

timing, 23
tools, 2,40
two—complement, 16

U

unfolding, 9
unsigned, 16

\

verification, 1, 40
VHDL, 1

w

while-do, 7

white space, 25

width, 14, 17, 29, 37
adjustment, 17
default, 14

X

X window, 40

