Proc. of The European Design Automation Conference (EDAC)
pp. 306-309; Glasgow, Scotland, march 12-15, 1990 (reformatted)

Multirate Integration in a Direct Simulation Method

J.T.J. van Eijndhoven

M.T. van Stiphout

HW. Buurman

Eindhoven University of Technology
Department of Electrical Engineering
PO box 513, 5600 MB Eindhoven, The Netherlands
email: jos@es.ele.tue.nl

1. Abstract
Multirate integration is a technique in which a
set of differential equations is solved with differ-
ent timesteps assigned to subsets of equations
[4][10]. In circuit simulation this is commonly
used in the waveform relaxation method, where
different subcircuits are analyzed independently
from the others. An important and obvious
advantage is the simulation efficiency: subcir-
cuits which are temporarily changing relatively
slowly, can be analyzed with large stepsizes,
independent of the activity in other subcircuits.
In this paper an approach is presented to fit
multirate integration in a direct simulation
scheme, thus bringing comparable advantages
without the relaxation process and its related
problems. An event driven scheme is proposed
for the circuit simulation problem, with individ-
ual timesteps for every component in the circuit.

Only with the new combination of a highly effi-
cient update scheme for the L/U decomposition,
and some event clustering method, leads the
multirate scheme to the expected speedup of the
simulation process.

Keywords: Timing, Circuit Simulation, Multi-
rate Integration.

2. The Idea

Before moving into a detailed analysis, a rough
outline of the method is sketched. For circuit
simulation, we emphasize the partitioning
between one large sparse set of network equa-
tions and many small sets of component equa-
tions. The network equations are based on the
Kirchhoff voltage and current laws, specifying
linear relations between node voltages, and pos-
sibly branch currents or branch voltages. The
component equations are in general small sets
of nonlinear relations between the component
terminal variables (node voltages and terminal
currents) and internal state variables, causing a
dynamic behavior.

By applying an integration formula and a lin-
earization to these small sets of equations, the
jacobian is determined for every component: A
small set of linear equations which specifies the
relation between the terminal variables of the
component, and is assumed to be valid within
some error bound during a small timeframe. All
these jacobians are inserted in the set of (linear)
network equations, which is subsequently
solved for all the network (terminal) variables.

The size of the time step h is adjusted during
the analysis, controlled by an error estimation.
So far, everything is standard practice. In our
approach now, the size of the timesteps is
assigned independently and individually for
each component, thus yielding jacobians based
on different values of h on every single time-
point. Every jacobian is assumed to be a valid
representation of the component, for a time
interval corresponding to its own h, starting at
the jacobian creation time. The endpoint of this
interval is set as event for this component.

To obtain a fast analysis scheme, we want to
minimize the amount of work spent on slow
parts of the circuit, i.e. parts with large values
of h. The jacobian equations are built to solve
time derivatives of the circuit variables. This
allows to keep these equations constant for
slowly changing subcircuits. Actually a first
order interpolation scheme is obtained this way,
creating only second order integration errors,
which are constantly monitored and controlled.
Solving for the actual circuit variables would
give considerably less opportunities to keep
parts of the equations constant, since it would
induce first order errors which quickly become
unexceptably large [9]. In our approach further-
more only modifications to these circuit variable
derivatives are solved, with an efficient sparse
implementation. This makes the amount of
work for a single event proportional to its effect,
instead of proportional to the size of the entire
circuit. Now the number of operations (the CPU
time) per event depends linearly on the actual
number of modified circuit variables. Basically
this constitutes a new and natural latency
exploitation method.

The simulation algorithm now repeatedly deter-
mines the nearest event with the related current
component, and increments the simulation time
to this event, updating the values of the circuit
variables. This is easily done, because the sys-
tem keeps track of values for both each variable
and its derivative. A new jacobian is now cre-
ated for the current component, possibly with a
modified value for its h, and a new event is set
for it. The linear network equations are solved
at the current timepoint, resulting in updated
derivatives of the system variables.

Of course the components in the circuit influ-
ence each others behavior. To control these
effects, the local truncation error of the applied
integration formula is evaluated for all

components whose terminal variable derivatives
actually modify due to the event of this current
component. If the truncation error grows, the
event of the affected component is modified to
an earlier time point, thus limiting the integra-
tion error to an upper bound.

3. Comparison with Others

As result a method is obtained which performs a
numerically stable integration, and exploits
latency in a natural way. The multirate integra-
tion scheme, which is the most important con-
tributor to the speed of waveform relaxation
programs, brings comparable advantages to this
simulation method. Since we really solve sets of
(implicit) network equations it is still a direct
method, as opposed to waveform relaxation
methods which rely on a converging relaxation
process to solve the circuit variables. Due to the
direct solution of equations we don’t have to
enforce strict circuit properties CMOS with
grounded capacitors’) to obtain convergence, but
can instead allow a wide freedom in component
and circuit modelling such as analog and digital
macromodels.

Due to the carefully implemented sparse update
scheme the CPU time spent in the solution of
the network equations stays relatively small.

Together with conventional techniques like
’spice’ and the waveform methods we strictly
adhere to stiffly stable implicit integration tech-
niques. Many other approaches speed up simu-
lation by performing a node-by-node integration
technique, not solving network equations and
discarding basic numerical stability and accu-
racy aspects. For reliability reasons we did
choose that track.

In the next sections, the principles of our
method will be treated in more detail, and
results are presented.

4. Validity of the Jacobians
To explain the integration method, we will
restrict ourselves here to linear systems. Every
component of the electronic circuit can now be
modeled with a matrix:

00_ A BOx0, &0
o0 OC DOm0 O

Here the vector X represents the terminal vari-
ables of the component, such as node voltages
and branch currents. The matrices A B C D
and the source vectd@sand b constitute the
model equations. The vector U is responsible for
the dynamic behavior of the component, with
u= 0u/0t. The dimension of the vector U will
normally be small, typically 1 to 3. To this sys-
tem an integration formula is added, for
instance the trapezoidal rule:

u(t+h) = u(t) + L h QU + wt +h))e)

For the multirate integration scheme, we intro-
duce U and X as:

(1)

0=3 () +ut+h) = Mga)

h
_ X(t+h) - x(t)
- h

If we want solve for X in our network equations,
the following jacobian (4) is derived from (1)-(3):

(3b)

JXx=]j (4a)
with:

J=A+IhBOI-1hD)'[C b

j= -BI-;hD)™ Ot (4c)

and | the identity matrix.

These jacobians are derived for all components
-each with its own h- and substituted into the
linear network equations. A sparse L/U decom-
position is maintained from which the vector X
is now solved by F/B substitution. An estima-
tion of the integration error is now easily
obtained: Differentiation of the component equa-
tions yields

u=Cx+Du (5)

X serves as relyable estimate for X, and U is
known from (1). The vector U is now used for
the local truncation error:

LTE=Kh? |l u || (6)

h is chosen in every component individually, to
keep this LTE below some upper bound. When
the corresponding jacobian is established, the
event of this component is set at the current
timepoint plus h. If the X changes during this
time interval, the norm of Wis recomputed. This
might lead to the rescheduling of the event.

5. Event Processing

In this section we will discuss the interaction
between different components, due to the net-
work equations. To distinguish between compo-
nents, a superscript K is introduced, whereas
symbols without superscript refer from now on
to the global network items. Thus we can write
the network equations as:

Skk=s (7)

S is a large sparse square matrix of full rank.
Depending on the generation of these equations,
i.e. sparse tableau analysis or modified nodal
analysis, the matrix (S, S) contains somehow all

the jacobians (dJ ,j)k. The terminal variables of

the K’th component)_(k, are a subset of the vector
X. Clearly these subsets might overlap.

In an initial DC analysis phase, the vector
X(t = 0) is solved. For all elements of this vec-
tor, the time of last update is recorded as t; = 0
for all element¥; individually. For all compo-

nents K a stepsize hli has been chosen, and the
vector of derivatives X is determined.

During the transient analysis, the program
repeatedly selects and solves the nearest event,
until the final integration time T is reached:

The component K corresponding to the nearest
event is selected. For this component, the norm

of U is determined, to decide whether h* is kept
equal, is enlarged, or is reduced.

hX is kept equal:
In this case, the jacobian JK (4b) doesn’t change,
and the matrix S and its L/U decomposition

remain valid. However the right hand vector jk
(4c) will normally change, and will lead to an
update As to the vector S. From As and the
existing L/U decomposition of S, we compute
Ax, the update to X. Because As originates
from the jacobian of a single component, it will
have very few (typically less than 3) nonzero ele-
ments. Therefore Ax will normally have very
few nonzero elements, and a careful sparse
implementation will yield this vector in very few
operations, in principle independent on circuit
size. Now for all indices | of nonzero elements in
Ax an updating is done as:

Xi - Xi + (tevent _ tiﬁi

)_(i =)_(i + A)_(I
t' - tevent (8)
|

print(i, t;, x;)

For all components which are incident to these
nonzero elements of AX, the integration errors
are checked, and if required their events are
reset according to (5) and (6).

hX is modified:

It is either decreased due to a large U requiring
a small h¥ for sufficient integration accuracy, or
it is enlarged due to a small u allowing a faster

analysis. The new h¥ leads to a different J¥
according to (4b), and a different S, requiring a
new L/U decomposition. The modification AS
has a rank of at most the dimension of the vec-

tor Uk, typically 1 to 3, and a very small number
of nonzero elements, typically less than 10.
Therefore the new L/U decomposition is effi-
ciently obtained with Bennetts algorithm [1],
with an amount of work proportional to the
number of modified elements in the L/U decom-
position [2].]

Of course the source vector | will normally also
change. Therefore the modification Ax is a
result from both the modification in S and in S.
However Ax is still easily and efficiently found,
in a cpu time which doesn’t directly depend on
the size of the circuit [2]. The other operations
needed to solve this event correspond to the

above case with unmodified h¥,

6. Event Synchronization
In the above algorithm, at every event the inte-
gration accuracy is checked in the components
incident to the modifications. This checking is
required but forms a considerable overhead in
cpu time. To reduce this overhead, several
events can be clustered on the same time point,
and solved together. This would involve for a
set of events a single solution of the sparse sys-
tem, and a single scan through the incident

components. Cpu time is saved, if components
would have been reached by more than one
event in the cluster, which is often true.

This clustering of events can be realized by a
very simple scheme: Limit the choice of values

for hX to values of the form:
hk=T[@2™, m positive integer (9)

And limit the timepoints for the setting of new

events to be an integer multiple of h*. This way,
components with comparable speed of change
will automatically be assigned equal event
points, and thus a strong clustering is obtained.

The event clustering together with the sparse
matrix implementation can be viewed as a
dynamic runtime partitioning method. In the
limit situation of a small strongly coupled all-
active network, the analysis scheme will auto-
matically start to behave spice-like, because all
components are evaluated at each timepoint.

7. Nonlinear Systems

For the analysis of electronic networks, the
method must be extended to cope with nonlinear
model equations. Basically this leads to two
additional problems:

a) At every event the jacobian of the current
component might change due to a new lineariza-
tion.

b) Strong nonlinearities can lead to unaccept-
able truncation errors (LTE’s) or even noncon-
vergence, requiring the reduction of the

timestep h¥.

The renewed linearization can be accounted for
in the L/U decomposition of S by an efficient
sparse update. This process seems feasible for
Newton Raphson based methods [6]. However
our program is based on continuous piecewise
linear component models, which easily allows
for a rank one update every time the solution
moves to a neighbouring segment of the model.

The reduction of h¥ due to nonlinearities is an
essential problem in a fastest-first multirate
integration scheme as our implementation. Rec-

ognizing that h¥ is too large at the time of the
corresponding event leads to implementation
problems, because other components with
smaller values of h have already been inte-
grated beyond the time point to which h, should
be reduced.

The alternative slowest-first method makes use
of an extrapolation of the fast variables over a
time interval which can be orders of magnitude
larger than these fast time constants. This
might lead to uncontrollable errors [4][10].

To solve this dilemma we employ the fastest-
first method, requiring only extrapolations of
signals within a time interval smaller than their
time constant. To prevent the problem of having
to backup in time for the fast signals, we check
the nonlinearities in the components together
with the LTE every time they are touched by an
event of another component (see eqs. (6) and (8)
and the subsequent paragraphs). This

rescheduling of events can however change the
order of the integration method, if done fre-
quently. This motivates the choice for a conser-
vative second order formula for the LTE, even if
the trapezoidal rule is used. Use of piecewise
linear component models allows for an easy
check for nonlinearity: With given X the time
distance to the nearest boundary of the current
linear segment can be explicitly determined,
and the event can be set accordingly.

8. Results
Many basic aspects of the integration scheme
explained in this paper are implemented and
running in a circuit simulation program since
1984 [3][11], in which piecewise linear relations
are used for all the nonlinear model equations.
As integration formula, a choice is available for
the trapezoidal rule, backward Euler, and BDF
methods. The integration scheme behaves
nicely, as far as can be expected from those for-
mula, even with especially constructed difficult
stiff systems. However only recent advances in
more intelligent sparse matrix algorithms [2],
and some way of event clustering, brought the
expected speedup by bringing a constant time to
solve a single event, and reducing the overhead.

To show the behavior of the presented method,
results are presented below for an example cir-
cuit. The circuit has four pairs of analog differ-
ential inputs, two four-to-one analog multiplex-
ers, a differential amplifier, and an eight bit AD
converter, with the necessary control logic. The
circuit is modeled with both analog and digital
components, as these are both allowed as compo-
nent primitives in our program. In the tran-
sient simulation four analog values are selected
after each other and processed. The total simu-
lation time is about 4 minutes on an Apollo
DN3000 workstation, including input parsing
and writing the output waveforms. Regarding
the complexity of the circuit, the length of the
simulation interval, and the limited perfor-
mance of the workstation, this speed is impres-
sive. During the analysis statistical values are
gathered about latency aspects and cpu time
spent in various parts of the program, to evalu-
ate the simulation method:

dimension of matrix S 149
nonzero elements in L/U 431
number of dyadic updates 12380
average modified L/U elements

per dyadic update 5.7
sparse F/B substitutions 17915
average size of AX 11.0
number of events processed 5158
times spent in:
solving X and Ax 30%
component operations for

solving nonlinearities 21%
verifying LTEs and events 9%
printing output 7%
updating I/U decomposition 2.8%

others 30%

(1]

(2]

[3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

9. References

Bennett J.M., "Triangular Factors of Mod-
ified Matrices", Numerische Mathematik,
vol. 7, pp. 217-221, 1965

Eijndhoven J.T.J., Stiphout M.T. van,
"Latency Exploitation in circuit Simula-
tion by Sparse Matrix Techniques", in:
Proc. Int. Symp. on Circuits And Systems,
Espoo, Finland, pp. 623-626, June 7-9,
1988

Eijndhoven J.T.J., Jess J.A.G., "Mixed
Mode Mixed Level Analysis with PWL
Systems", in: Proc. Int. Conf. on Circuits
And Systems, Montreal, Canada, pp.
1377-1380, may 7-10, 1984

Gear C.W., Wells D.R., "Multirate Linear
Multistep Methods", BIT (Denmark), vol.
24, no. 4, pp. 484-502, 1984

Lelarasmee E., Ruehli A.E., Sangiovanni-
Vincentelli A., "The waveform relaxation
method for a time domain analysis of
large scale integrated -circuits", IEEE
Transactions on CAD of Integrated Cir-
cuits and systems, vol. CAD 1, pp.
131-145, July 1982.

Ortega J.M., Rheinboldt W.C., Iterative
Solution of Nonlinear Equations in Sev-
eral Variables, Academic Press, New
York, 1970

Palusinski O.A., "Simulation of Dynamic
Systems Using Multirate Integration
Techniques", Trans. Soc. Comput. Simula-
tion (USA), vol. 2, no. 4, pp. 257-273, Dec.
1985

Rodriguez G., Carrion F.J., "Stability
Analysis for Multirate, Predictor-
Corrector and Linear Multistep Integra-
tion Methods, Used in Real Time Simula-
tion", Proc. 1985 Summer Computer Sim-
ulation Conf., Chicago, Ill. (USA), pp.
371-376, July 22-24, 1985

Sakallah K.A., Director S.W., "SAMSONZ2:
An Event Driven VLSI Circuit Simula-
tor", IEEE Trans. on CAD, vol. CAD-4, no.
4, pp. 668-684, Oct. 1985

Skelboe S., "Stability properties of Back-
ward Differentiation Multirate Formu-
las", Applied Numerical Mathematics, vol.
5, pp. 151-160, 1989

Stiphout M.T., Eijndhoven J.T.J. van,
Buurman H.W., "PLATO: A New Piece-
wise Linear Simulation Tool", in: Proc.
European Design Automation Conference,
Glasgow, G. Brittain, March 12-15, 1990
(This proceedings).

White J. K., Sangiovanni-Vincentelli A.,
"Relaxation Techniques for Simulation of
VLSI Circuits”, Kluwer Academic, 1987.

