Soft Macro Cell Generation
by Two Dimensional Folding

by

Lukas P.P.P. van Ginneken, Jos T.J. van Eijndhoven.
Paul RM. van Teeffelen, Theo J. Deckers

Automatic System Design Group, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
tel: 31-40-473710, fax: 31-40-455925, telex: 51163, elestukas@heithe5.bitnet

ABSTRACT - We present a macro cell generator for flexible multilevel
nMOS nor arrays. New is a two dimensional column and row folding
algorithm that optimizes area usage and cell shape. The accurate
control of the shape is important in combination with top down fioor
planning. Compared to PLA’s the new cell generator allows for
muitilevel logic decomposition, and generates denser and more flexible
lavouts. The folding algorithm uses an elegant hierarchicai divide and
conquer technique, and produces results that’are 59% smaller than a
simulated annealing approach.

1. INTRODUCTION

The building block placement problem has been shown expensive to soive.
The problem of packing many blocks of different shapes into a minimal
rectangular area is very difficult for heuristics. To overcome these
difficulties top down floorplanning (7] ignores the rigid shape constraints
and assumes that any shape can be made. The shapes of the blocks can be
optimized after the floor plan topology has been determined [9). To make
fioor planning feasable, it is necessary that cell shapes are conwolled. So
far few cell generators have this capability and they mainly rely on
placement and routing.

Our cell generator uses different amounts of folding in both dimensions to
10 obtain the desired aspect ratio. The two dimensional foiding algorithm
uses a hierarchical divide and conguer approach to gradually refine the
‘olding. The circuit is composed of horizontal and vertical strips,.with 2
connection pattern that is determined by its function. . When multiple strips
are assigned 1o the same column or row, we say that they have been folded.
Foiding strips into the same column may make other foldings in both
dimensions impossible. Therefore the orientation of folding can be used to
steer the process towards the desired aspect ratio. For larger arrays two
dimensional folding also increases the functional density.

Folding techniques have been developed for PLA’s [2] where the objective
was to minimize the area of the PLA. These techniques can handle certain
constraints for the pins, but the possibilities of adapting the shape and pin
positions are limited. Another limitation of PLA folding is that only two
strips can be folded into one column. Also channel routing can be
formulated as a one dimensional folding problem (track assignment). The
unconstrained one dimensional case can easily be solved by the left edge
aigorithm. For the constrained case heuristics have been given by [8] and
others.

Unconstrained folding is used in Weinberger arrays {6] where the nets can
be assigned using the left edge algorithm. The Weinberger array can be
viewed as a PLA in which the and and or planes have been merged into
one plane. This makes muiti level logic possible. We use a variation of the

Weinberger array that allows for two dimensional folding. Not only can.

‘This work was supported by the EEC under Esprit project nr. 991,
and by the Foundation FOM under project nr. EEL.31.0417

3

ISCAS’88

several nets be assigned to the same row, but also multiple gates can be
assigned to the same column. Signal terminal locations can be specified at
any side of the array.

2. DOUBLE FOLDED LOGIC ARRAYS

The double folded logic array consists of vertical and horizomtal strips. All
strips, except some strips used for IfO terminals, are connected pairwise
forming a cross. Each cross realizes a nor gate. In fig.1 the schematic
diagram of such a nor gate is givenist

L4

Figure 1. Cross of strips
Since the vertical strips connect the gates of ransistors they will be:refered
1o as gates, even though no transistor may be present. The horizontal strips
will be called nets.

The nets are connected 1o the drains of the transistors; the sources are

always connected to ground. This way the transistors function as the pull

down devices of the nor gates. The output is formed by a via, which

connects the horizontal net w the vertical gate thus forming a conducting

cross carrying the output signal of the nor. A depletion wansitor is’
connected to the gate as a pull-up. The puli-ups of several nors are placed in

rows 1o allow them to be connected by a power net.

Several gates may be assigned to one column, and several nets may be
assigned to one row. This multipie assignment is known as folding.
Obviously, strips in the same column are not allowed to overlap. The
amount of folding is therefore limited by the connections that have 0 be
made. To make two dimensional folding possible multipie rows of pull up
devices are introduced. e

This layout style has a number of features, which make efficient folding
possible. The most important one is that the sequence of the transistors and
the output is irrelevant. This way the folding algorithm is completely free w0
determine the most optimal sequence. Secondly, the devices and vias that
are Jocated at the intersections of the gates and nets, have sizes that are

727

CH2458-8/88/0000-0727$1.00 © 1988 IEEE

comparable to the. width of the wires. As those sizes diverge more,
seperating the devices and the interconnections into disjunct areas becomes
advantageous. An important property of nors is that all pull down
transistors can have the same size, when the pull ups have the same size.
The size of the pull downs does not need to depend on the number of inputs.

In fig.2 the schematic of a smail example circuit is given. The circuit is a
full adder which implements the following boolean equations:

D=AB+AC+BC
E=ABC+D(A+B+C)

This 5 level implementation is not necessarily the best, but it illustrates the
capabilities of the technique. Since a PLA realization needs only 3 levels,
this is always a possible solution. The muitilevel implementation however
needs 7 transistors less then a 3 level implementation.

Figure 2. Fuil adder schematic circuit.

The layout of the above circuit can be seen in fig.3. The implementation
presented here is suitable for a simple nMOS process with one layer of
metal. The gates are realized in polysilicon and the nets in metal. For the
ground extra vertical difusion strips are introduced everywhere. They do not
take part in the folding process. Notice that two rows of pull ups have been
placed, which allows several gates to share the same column.

power

gqround

pull-down
via -

N P
I

diffusion ——

gate — ¢
L

Figure 3. Mask layout of a full adder

3. PROGRAM FLOW

The program begins by reading a set of general boolean cxpressions, as
generated by the logic decomposition algorithms. These boolean
expressions are mapped into nors, adding some inverters where necessary.
This is done by local transformations. It is guaranteed that no two inverters
in series will be present.

728

After the mapping to nors is done, the net/gate incidence stucture is
composed. For the input and output terminals four pseudo strips are
introduced, one for cachrside of the array. Each pseudo strip will be
assigned to a predetermined side of the array by the folding. This way the
terminals are forced to the side that was specified.

In the next stage the folding algorithm assigns nets and gates t0 rows and
columns. In this stage the power and ground connections are ignored. The
folding algorithm uses a hierarchical wop down approach similar to the
approach of [1] to gate array routing. The array is repeatedly subdivided by
orthogonal cutting lines. Each time the 2xN folding problem is solved. This
way the assignment is gradually refined.

The power and ground nets are inserted in the array after the foiding,
Subsequently the pull-ups are assigned to valid positions on the supply nets.
If a single net were used for the ground and power, folding would become
impossible. Therefore we do not consider the power and ground during the
folding.

The power and ground line are placed in pairs, and always occupy a full
row in the array. The pull up devices are placed on the intersection of its
gate and a power line. The number of power and ground lines is therefore
determined by the legal positions of the pull ups. Because pull-up are wider
than pull downs and vias, two pull-ups are not allowed to be adjacent
between two ground diffusion strips. The minimum number of power and
ground lines can be determined by a linear scan over the array. A row of
pull ups is placed whenever the placement of a puil up of some gate can no
longer be delayed. The first row of pull ups-must alwags:be to the top of tac
array 10 connect the ground diffusions (See fig.3).

A simple grid based compaction algorithm is applied before the masks are
generated. The design rules are specified on an element to element basis.
Different rules apply in different directions and when elements are
connected. Vias and transistors are required to be on the center of the grid
lines. When the arrays become larger, however, this compaction becomes
less effective. The probability that somewhere on a grid line the maximum
design rule must be applied increases with the size of the array.

4. THE FOLDING ALGORITHM

The folding problem can be formally stated as follows: The circuit is
specified as a bipanite graph B(G,N, E), with the nodes G representing the
gates and N representing the nets. The edges ECGxN represent the gate /
net incidences. The circuit is to be realized on a grid of rows and columns.
The set of grid points is represented by ZxZ. The layout of a circuit 18
determined by a gate assignment function ¢: G—Z which assigns gates 10
columns and a net assignment function y: N—Z which assigns nets to rows.
Let v(n) denote the set of neighbors of n: v(n)={geG|{(g.n)eE}. The
span ¢ of a net neN is an interval of columns defined ac
o(n) = min ¢(g), max ¢{g)]. The spans of gates that are assigned to th¢
gev(n} gev(n)

same column are not allowed to overlap:
Yg.ge6 [0Gi)=0(g)) => o(gi)no(g))=2]

Since the problem is symmetric the same goes, mutatis mutandis, for the
nets. The objective of the folding algorithm is to find a valid ¢ and ¥
subject to some cost function, for instance area.

The heuristic that we propose uses a divide and conquer approach similar 10
the approach of [1]. The design is repeatedly subdivided by straight
orthogonal cutting lines. After each vertical division it is decided which
gaies arc placed 10 the right of the cutting fine and which are placed 1o U
left. After each horizontal division the neis are divided into two groups.
After the kth horizontal cut the nets are divided into k+1 sets Nog..Ny.

X
N= :’0N| VN.‘NK [N|ﬁN)=®]

Similarly the gaies are partitioned intw &1 sets Gy, ... G, after [verticai cuts.
The sets are ordered physically, that is, they imply a constraint on the
functions ¢ and .

YeeG reg [i<j=> 0(g)<oth)]

Gy Gz Ga Gs Gs Gg G7 Gg

[l mints St Sl didis Ratholt sl
' ! i ' ' ' v
. i : ' v . 1N,
. ! .8
: . : : i ' '
R i ek IR
i ' | [' TR
0 1 f 1 [' v Ng
' ' ' 1 i 1 : v
i
Ns
ut kK
N3
| | 1 i 1 '] v
| ' ' ' ' ' v |N2
----- Ll Bt el e Sl e |
\ i ' ' ! ' ' Ny
| A (Y SV U I R DU S

Figure 4. A 2xN subproblem
When a subset G; is partitioned into iwo subsets G; and Gy, this implies a
restriction of ¢ (although a solution remains always possible). The index of
remaining sets G; with j>i increases by one. As the exact assignment has
not yet been determined the span of a gate will be defined as

3(q) = [min{i | Ni~v(g)<>@}, max{i | Niwv(g)<>D}]

To make an estmate of the resulting size of the array, and in order to
avaluate the consequences of é&itting line decisions, we can use a few
aumbers that predict the number of rows needed for a set of nets, or the
number of columns needed for a set of gates. The maximum number of
columns needed for a set of gates is given by

WG = max #0eG; | je5(0)}

Notice that this is the exact number of columns if 0=G. For the minimum
two lower bounds can be given:

3(Gi) = max #{geGi | je5(g)ai+1€G(g)} and ¥(Gi) = max#{v(n)nG)

These upper and lower bounds can be used to estimate the final size of the
array.

When a cut is made the nets or gates are divided into two groups. The
algorithm chooses an element which results in the largest gain in the object
function: A possible objective function, which optimizes area is
! L UG)+(G & max(S(N:), v{N; N;
(5 max{8(Gi}. ®Gi)) u(G|)) < (3 x(B(NG), v(Ni))+ul ,))

= 2 =0 2

In this objective function the width and height of the array are estimated as
the mean of the upper and lower bounds.

To control the shape one could change the object function. However,
experiments show that the algorithm is rather insensitive to small changes in
the objective function. The shape is therefore controlled by selecting the
orientation of the next cutting line. A vertical cutting line tends to make the
array wider and lower, a horizontal line makes the array higher and
narrower. The orientation is chosen such that the estimated array size is
corrected to match the desired aspect ratio. This is a very effective control
mechanism, which is also very accurate because the repeated cuts allow for
corrections that gradually become smaller.

To partition a set of strips we use a variation on the mincut algorithm {4, 5.
" The algorithm starts with an arbitrary partitioning into two sets. It ransfers
strips one by one to the other set in an attempt to find a better solation. An
element which has been transfered becomes locked and canaot be moved
any more. When all strips have become locked we have completed a pass.

The algorithm performs several passes until no improvement can be found. :

729

Each time the initial state of the next pass is the best state encountered so
far. A pass is continued even when the cumrent state becomes worse. This
helps to escape from local minima.

To prevent all elements from moving to one set. clements are not allowed to
be selected from a set which contains less than %5 of the total number of
elements. The algorithm continues to perform moves, until no valid move
is possible (all elements are locked or all unlocked elements are in a set
smaller than %). In practice only a few passes are necessary 10 arive in a
minimum. This 1s reached when the inttial state of the pass is the best state
encountered.

PARTITIONING ALGORITHM:
1. Begin with an arbitrary partition. Save this initiai state.
2. Begin of a pass: unlock ail strips.

3. Is one set smaller than A7 If yes then limit the following search to members of
the larger set.

4. Transfer all strips back and forth once. Remember which strip has the lowest
increase or largest decrease of the object function.

5. Transfer that strip and lock it.

8. Is the present state better than the initial state? If yes then save the present
state.

~

Are there still uniocked strips? And are they in a set larger than 47 If yes then
goto 2.

8. The best state becomes the initial state of the next pass. Did we encounter a
state that was better than the initial state? If yes then go to 1.

5. EXPERIMENTAL RESULTS

In {3] the same optimization problem was formulated, and a solution using
simulated annealing was proposed. From this paper the following example
circuit was used as a bench mark. The circuit contains 36 gates and 28 nets.
The terminals were required to be at the same side as in the given example.
The result from [3] is given in Fig.5 and uses 21 rows and 21 columns. The
result of the new algorithm (Fig.6) uses only 18 rows and only 10 columns,
an improvement of 59%.

P = R
73 P
T30 L

Wil

o— e ll Li

oI !

FeamEEREaBYb e

3

Figure 5. Example circuit from [3]
“EE,
— 313
SF ‘i §
)
o3
e

Figure 6. Result of the new algorithm

T T T

An example circuit has been layed out with 10 different aspect ratios. In
fig.8 five of the results are shown. The numbers indicate the desired aspect
ratio. The arrays tend to be approximately 20% too high, which is due to the
assignment of power and ground after the folding. Since this factor is quite
constant it is easily compensated for.

6
2— + 900000
3. - 800000
2 L 700000
+ 600000
Obuwined , | L 500000 -
aspect ratio AN
v - 400000
0.5 - 300000
0.33 4 - 200000
02 L 100000
T T T T T 1
0.2 03305 1 2 3456
Desired aspect ratio

Figure 7. Control over the aspect ratio

Figure 8. The same circuit with different aspect ratios

In fig.7 the result of this experiment is plotted in a graph. We can see that
there is an almost linear releation between the desired aspect ratio and the
actually obtained aspect ratio. The aspect ratio can be well controlled upto a
maximum or minimum ratio. At the same time the area (dashed) is almost
independent of the shape.

6. CONCLUSIONS

A generator for fiexibly shaped cells was presented. It uses an elegant
hierarchical divide and conquer algorithm. The shape and the pin positions
can be controlled accurately, while the area remains constant. This shape

. optimization is very useful in floorpian optimization in the sense of [9).

The two dimensional folding technique resuits in very dense layouts.
Compared with a simulated annealing algorithm the results were 59%
better. A quick comparison with an automatic standard cell program
showed a 10% area reduction. It turns out that the object function does not
control shape efficiently. Choosing the cut line orientation helps more.
Even though ail strips are required to be perfectly straight, the amount of
freedom in folding is very large. The algorithm has no difficulty to fill any
shape of rectangle densely.

This layout style allows for larger regular layout structures than
conventional PLA’s or Weinberger arrays. An advantage is that also
multilevel logic can be implemented. Modern logic optimization tools such
as logic decomposition can be applied. By introducing feedback it is also
possible 1o realize sequential circuits such as finite state machines.

The proposed algorithm could also be applied to other logic families,
CMOS, and to gate matrix layout. To do this a net with transistors will
have to be replaced by a more complex piece of layout.

The two dimensional folding problem has not yet been studied extensively,
and other algorithms must be investigated. Folding can be seen as a
simultaneous placement and routing technique. Extending this idea it might
also be possible to use the algorithm of [1] for the first number of cuts. The
wires would not have to be straight, and the mutual influence of the
different parts of the layout would be smaller.

REFERENCES

{1} MBursiein, SJ.Hong, R.Pelavin: "Hierarchical VLSI Layout
Simultaneous Placement and Wiring of Gate Arrays”, Proc./FIP
Int.Confon Very Large Scale Integration, Trondheim, 16-1%
Aug.1983, F.Anceau and EJ.Aas (eds.), pp.45-60.

2] G.De Micheli: "Multiple Consrained Folding of Programmable
Logic Arrays: Theory and Applications”, IEEE Trans. on Computer
Aided Design, Vol CAD-2, No.3, July 1983, pp.151-167, errata in
VoLCAD-3, No.3, July 1984, pp.256.

3] S.Devadas and A.R. Newton: "Genie: A Generalized Array
Optimizer for VLSI Synthesis”, Proc. 23rd Design Automation
Conf., Las Vegas, 29 June-2 July 1986, pp.631-637.

{4] C.M. Fiduccia and R.M. Mattheyses: "A Linear-Time Heuristic for
improving Network Partitions", Proc.19th Design Auwtomanon
Conf., Las Vegas, 1982, pp.175-181.

5] B.W. Kernighan and S.Lin: "An Efficient Heuristic Procedure for
Partitioning Graphs". The Bell System Technical Journal. Feb. 197C.
PP-291-307.

[6] A Weinberger: "Large Scale Integration of MOS Complex Logic: A
Layout Method", IEEE Journal of Solid Swate Circuits, vol.SC 2
Nod, Dec.1967, pp.182-190.

{7} LPPP. van Ginneken and RHJM. Otuen: "Stepwise Lavoul
Refinement”, Proc. Int. Conf. on Computer Design, Port Chester
NY. Oct. 8-11 1984, pp30-36.

[8] T.Yoshimura and E.S. Kuh: "Efficient Algorithms for Chunis
Routing”. JEEE Trans. on Computer Aided Design of Iniegralts
Circuits and Systems, Vol CAD-1, No.1, Jan 1982, pp.25-35.

[9] R.H.J.M. Ouen: "Efficient Floorplan Optimization”, Proc. Ini. Conf.
Computer Design, Port Chester NY, Oct. 1983.

730

