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Abstract: Consumer electronics vendors increasingly deploy shared-memory 
multiprocessor SoCs, such as Philips Nexperia, to balance flexibility (late 
changes, software download, reuse) and cost (silicon area, power 
consumption) requirements. With the convergence of storage, digital 
television, and connectivity, these media-processing systems must support 
numerous operational modes. Within a mode, the system concurrently 
processes many streams, each imposing a potentially dynamic workload on the 
scarce system resources. The dynamic sharing of scarce resources is known to 
jeopardize robustness and predictability. Resource reservation is an accepted 
approach to tackle this problem. This chapter applies the resource reservation 
paradigm to interrelated SoC resources: processor cycles, cache space, and 
memory access cycles. The presented virtual platform approach aims to 
integrate the reservation mechanisms of each shared SoC resource as the first 
step towards robust, yet flexible and cost-effective consumer products. 

Key words: Virtual platform, multiprocessor system, shared resources, shared memory 

1. INTRODUCTION  

The convergence of consumer applications in the TV, PC, and storage 
domains introduces new combinations of features and applications that 
execute in parallel. In addition, consumer multimedia devices are becoming 
increasingly flexible. Flexibility enables accommodating late changes in 
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standards or product scope during system design, and allows in the field 
upgrades. To address the flexibility and concurrency requirements, consumer 
electronics vendors increasingly deploy heterogeneous multiprocessors 
systems.  

The high production volume of consumer products sets severe 
requirements on the product cost, leading to resource-constrained devices. 
To achieve a cost effective solution, expensive resources, such as memory 
and processor time, are shared among concurrent applications.  

A typical multimedia application consists of independently developed 
subsystems with strong internal cohesion. At the subsystem borders, the real-
time requirements are decoupled from the other subsystems. However, 
resource sharing induces temporal interference among otherwise temporal 
independent subsystems given the highly dynamic workload of the targeted 
media applications, such as audio/video coding, image improvement, and 
content analysis. Figure 4-1. depicts the load fluctuations (in time) of two 
independent subsystems sharing a resource. At a given point in time, both 
subsystems require more resources than the total available and one (or both) 
of the subsystems will suffer. 

Figure 4-1. Load fluctuations of independent subsystems. 

The concurrent execution of dynamic applications on shared resources is 
a potential source of interference, which leads to unpredictability and 
jeopardizes overall system robustness. We aim to bound interference by 
isolating and protecting independent subsystems from each other, while 
preserving typical qualities of multimedia devices, such as robustness and 
cost effectiveness.  

Resource reservation is a well-known technique in operating system 
research to improve robustness and predictability. It is based on four 
components, admission control, scheduling, accounting, and enforcement. 
When properly combined, they provide guaranteed resource reservations. 
Resource reservations consist at least of two basic parameters: share and 
granularity. For example, a share of 5 milliseconds and a time granularity of 
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20 milliseconds determine a processing time reservation. Different resources 
have various types and degrees of share-ability. For example, a 
programmable processor is shareable in time and fully preemptable. An 
MPEG-2 (video coding) hardware accelerator may decode one high-
definition stream or decode two standard-definition streams in time-shared 
fashion. Memory is shared in space. 

To bound interference at system level, the multimedia device must 
provide the subsystems with a reservation mechanism for each resource. By 
configuring the resource reservations, we create an execution platform that is 
tailored to the resource needs of the subsystem. We term this a virtual 
platform. A virtual platform provides guaranteed resource availability, while 
restricting resource usage to a configured maximum. 

2. RELATED WORK 

Multiprocessor systems on chip (SoC) are rapidly entering the high-
volume electronics market. Example SoC platforms are Philips Nexperia (de 
Oliveira & van Antwerpen 2003), Texas Instruments OMAP(Cumming 
2003), and STMicroelectronics StepNP (Paulin, Pilkington, & Bensoudane 
2002). A mayor challenge for these multiprocessor systems is to effectively 
use the available resources and maintain a high degree of robustness. 
Currently, these systems do not explicitly address interference between 
software modules that compete for shared system resources. The robustness 
problems caused by interference are typically evaded by a high degree of 
over provisioning.  

Various research efforts address interference for specific resources 
through processor resource reservations (Lipari & Bini 2003), (Eide et al. 
2004), (Baruah & Lipari 2004), interconnection guarantees, Chapter 1 of this 
book (Goossens & González Pestana 2004), and cache partitioning (Liedtke, 
Haertig, & Hohmuth 1997),(Molnos et al. 2005). For instance, Ravi (Ravi 
2004) presents various mechanisms for cache management based on priority 
assignment and enforcement. Recent research aims for integrated approaches 
that considers combination of resources such as processor and network 
reservations(Rajkumar et al. 2001), (Nolte & Kwei-Jay 2002). We take one 
step further and develop an integrated approach to bound interference for all 
shared resources in upcoming multiprocessor systems. Our multi-resource 
reservation is the base for defining an embedded virtual platform. 

Numerous systems have been designed which use virtualization to 
subdivide the ample resources of a modern computer since IBM introduced 
the 360 model 67, in 1967. In a traditional virtual machine (VM), the virtual 
hardware exposed is functionally identical to the underlying machine 
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(Seawright & MacKinnon 1979). However, full virtualization is not always 
desired. Some of the disadvantages lead to a performance penalty that 
current high volume electronics vendors are not willing to pay. One of the 
goals of recent research on virtualization is to overcome these disadvantages. 
Rather than attempting to emulate some existing hardware device, the Xen 
VM research of Barham et al. (Barham et al. 2003) exposes specially 
designed block (device and network) interface abstractions to host operating 
systems, in what they call paravirtualization. Barham et al. assume full 
resource availability. It is not clear whether or how their approach provides 
guarantees and performs admission control. The severe cost requirements in 
the consumer electronics domain oblige us to provide resource guarantees 
for resource-constrained systems. 

The remainder of this paper is organized as follows. Section 3 describes a 
embedded system consisting of a multiprocessor SoC in which concurrent 
media applications execute. The interference problem is explored in Section 
4 and the concept of virtual platform as a solution to bound interference is 
introduced in Section 5. Section 6 presents the different reservation 
mechanism for the three main SoC resources (processor cycles, cache space 
and memory access cycles) used to implement the virtual platform. Finally, 
the conclusion is drawn in Section 7. 

3. MULTIPROCESSOR SYSTEM  

Multiprocessor SoCs are deployed to cope with the market demand for 
high performance, flexibility, and low cost. Progressive IC technology steps 
reduce the impact of programmable hardware on the total silicon area and 
power budget. This permits SoC designers to shift more and more 
functionality from dedicated hardware accelerators to software, in order to 
increase flexibility and reduce hardware development cost. However, for at 
least the coming decade, these multiprocessor SoCs still combine 
flexibility—in the form of one or more programmable central processing 
units (CPU) and digital signal processors (DSP)—with the performance 
density of application-specific hardware accelerators. Figure 4-2 depicts 
such a heterogeneous SoC architecture as presented in Chapter 5 of this book 
(van Eijndhoven et al. 2005) and (Stravers & Hoogerbrugge 2001). In 
providing a virtual platform for upcoming SoCs, we have to cope with the 
interaction between processing in hardware and software. 
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Figure 4-2. Heterogeneous SoC architecture with CPUs, DSPs, and accelerators 
communicating through shared memory. 

With progressive technology steps, processing power and memory sizes 
increase, keeping the pace with the memory and processing capacity 
requirements imposed by media applications. In contrast, memory 
bandwidth scales slowly and memory latency remains almost the same. 
Thus, memory bandwidth and latency are becoming the dominant system 
bottleneck.  

Figure 4-3 details the data path of a multiprocessor such as in Figure 4-2,
in which a number of DSPs, CPUs, and accelerators communicate through 
shared memory. The architecture applies a two-level cache hierarchy to 
reduce memory bandwidth and latency requirements. The cache hierarchy is 
inclusive: a memory block can only be in a L1 cache if it also appears in the 
L2 cache. When a processing unit produces new data and stores it in its L1 
cache, the L2 copy of that memory block becomes stale; in such cases a 
cache coherence protocol ensures that any consumer of the data always 
receives the updated L1 copy of the data. Furthermore, such a coherent 
communication network allows direct L1-to-L1 cache transfers, e.g. when a 
consumer task on processing unit A reads data from a producer task on 
processing unit B. At any moment in time, a modified data item resides only 
in one L1 cache. This property is intended to facilitate the partitioning of 
applications, consisting of multiple producer/consumer tasks, over multiple 
processors. 
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Figure 4-3. Data path for the memory hierarchy. 

The applications we are dealing with are media applications (mainly audio 
and video). Figure 4-4 depicts an example of a media application (Otero 
Pérez et al. 2003). Such applications are also known as streaming 
applications, because they process streams of data. A stream is a sequence of 
data objects of a particular type (audio samples, video pictures, video lines, 
or even pixels). For example, a video stream is a sequence of pictures, with a 
given picture rate: the number of pictures to be displayed per second. A 
stream is typically produced by one streaming task and consumed by some 
other concurrent asynchronous streaming task. The part of the stream that 
has been produced but not yet consumed, is temporarily stored in a buffer, or 
is being transferred, from producer to buffer, or from buffer to consumer. 

Figure 4-4. Media application example. 
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Our execution model for streaming applications consists of a connected 
graph in which the nodes represent either a task (an independent, 
asynchronous, active component that uses processing and memory 
resources) or a buffer (a passive component that uses memory resources). 
The interconnections represent the data transfer (memory access). The 
execution model is hierarchical. At higher levels of abstraction, a connected 
graph can again be viewed as a subsystem in a connected graph. Figure 4-4 
depicts four such subsystems: main, pip, disk, and user interface (UI). The 
subsystems are denoted with the rounded rectangles. 

4. INTERFERENCE AMONG SUBSYSTEMS 

The pressure on time-to-market, the emergence of multi-site 
development, and the ever-increasing size of software stacks are just some of 
the factors that enforce a radical change in the development of modern 
(multimedia) applications. In the past software systems were almost 
completely written from scratch as fully self-contained systems, developed 
under one roof. These days, systems are increasingly composed of 
independently developed subsystems, originating from different locations 
and in many cases from different companies. These subsystems are not 
designed as a specific part of a whole, but are intended to be deployed in 
many different systems, and serve different ranges of products. 

Ideally, each subsystem is evaluated and tested in isolation for a specific 
system. The job of the system integrator is to mix and match the subsystems 
to compose the final system. Unfortunately, current subsystems are not 
compositional. The ad-hoc and implicit way in which the scarce SoC 
resources are managed, and the unbounded interference caused by resource 
sharing, introduces temporal interdependencies among these initially 
independent subsystems. If not properly managed, these interdependencies 
lead to unpredictable behavior for the integrated system.  

Media-processing SoCs rely on priority scheduling in embedded real-
time operating systems, such as VxWorks and pSOS, to manage real-time 
requirements. The current setting of priorities is an example of ad-hoc 
management. Traditionally, priorities were used to manage resource 
utilization in closed, real-time systems, where task activations and execution 
time are deterministic. Under these conditions, well-known priority 
assignment methods, such as rate monotonic assignment (Liu & Layland 
1973), work fine. However, media-processing tasks tend to violate many of 
these assumptions, e.g., by generating idle time, dynamically fluctuating 
workloads, jitter, etc. The subsystem designers have to rely on trial and error 
to obtain a working system. Moreover, at integration time, when all tasks in 
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all subsystems come together, the integrator has to start again from scratch. 
The priority assignment of the subsystem tasks cannot be reused in the 
integrated system, and the system integrator is faced with the difficult task of 
evaluating different priority settings, while other factors such as importance 
of the task or response time requirements influence the priority assignment.  

A second example is the priority assigned to the various processors for 
bus access. The processor’s bus priority is fixed and unrelated to the tasks 
executed by the processors. Oftentimes, the priority setting is based on a 
complex relation among the various tasks that might execute on that 
processor. 

The use of a cache introduces a third example of unpredictability, due to 
the difficulty in predicting when certain data is available in the cache or still 
has to be fetched from off-chip memory, causing the processor to stall. 
Interrupts in combination with caches are a further cause of unbounded 
interference. A typical system relies on interrupts to activate hardware 
accelerator, to handle exceptions, to wake up software tasks, etc. An 
interrupt causes a context switch, evicting the running task from the 
processor and invalidating the task data present in the cache. When the 
running task resumes execution, potentially all its data has to be fetched 
again from memory. Therefore, it is very difficult to determine an upper 
bound for the performance impact caused by interrupts in cache-based 
systems. 

We conclude from the previous paragraphs that resource management 
based on bounding interference constitutes the foundation for compositional 
system design. We propose an integrated approach to resource management 
based on guaranteed resource reservation for all shared SoC resources, 
tailored to the needs of the resource consumers (subsystems). The concept of 
a virtual platform—as outlined in the next section—summarizes our 
approach towards such integration. 

5. VIRTUAL PLATFORM 

A virtual platform provides guaranteed resource availability, while 
restricting resource usage to a configured maximum. Like the real platform, 
a virtual platform provides a wide variety of resources: programmable 
processors, function specific hardware, memory space, memory access 
bandwidth, and interconnect bandwidth. In a SoC, a virtual platform can be 
implemented in various ways. For example, a set of tasks can execute 
concurrently on multiple slow processors or sequentially on a fast processor.  

The implementation of a virtual platform is based on resource reservation 
mechanisms that provide temporal and spatial isolation among subsystems. 
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The resource manager is responsible for providing virtual platforms by 
ensuring that sufficient resources are reserved. For that, a resource 
reservation mechanism, for each main SoC resource, guarantees the 
availability of resources. As depicted in Figure 4-5, the resource manager 
translates subsystem requirements and sets the parameters for the virtual 
platform. This requires appropriate knowledge of the demands of the 
individual subsystems in terms of the specific platform resources. 
Characterizing performance and behavior of the subsystems is a subject of 
research, fundamental to the realization of a virtual platform. 

Figure 4-5. Subsystems and virtual platforms. 

Furthermore, to actually deploy the virtual platform concept, the 
following three issues must be resolved. Firstly, to provide a virtual 
platform, the resource manager has to coordinate the resource reservations 
for each resource. For that, the interdependencies among resources must be 
modeled and analyzed. The effective CPU speed depends on the reservations 
made in the memory architecture, such as cache and bus bandwidth. For 
example, a memory controller that schedules processor requests to memory 
guarantees a given average latency for a given processor. This latency is 
used to calculate the execution time of a subsystem on this processor and 
determines its processing budget. 

Secondly, the reservation of a resource in the resource hierarchy may not 
be based on the virtual platform using the resource, but on the actual 
physical components using this resource. An example is memory bandwidth. 
This bandwidth is allocated to the physical processors accessing the memory 
independently from which virtual platform this processor is allocated to. As 
a virtual platform is, in general, implemented by several physical processors, 
a complex hierarchical set of interdependencies is created. These 
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interdependencies are very difficult to understand and to analyze. Note that 
this complexity is not introduced by the virtual platform concept itself, but is 
inherently present in current SoC architectures and must be solved 
independently of the virtual platform. 

Finally, given the dynamic behavior of the software, absolute guarantees 
are only possible when the reservations are based on worst-case load. For 
cost effectiveness reasons, this is unfeasible even if the worst-case load 
would be known (which is typically not the case). Structural load 
fluctuations can (to a limited extent) be addressed in the virtual platforms by 
reallocating unused reservations or dynamically adapt the reservations to 
increase/decrease the virtual platform capacity. However, high-volume 
electronics products stress the platform resource utilization to the limit. At a 
given point, the required load of the concurrently executing subsystem will 
exceed the resource capacity and some subsystem will experience a resource 
shortage. Resolving temporal overloads within a subsystem is specific to 
each subsystem; it is therefore the responsibility of the subsystem to resolve 
this. 

Figure 4-6. Providing virtual platforms to subsystems. 

The following section presents the first step towards implementing a 
virtual platform: the resource reservation mechanisms for the three main 
SoC resources: CPU cycles, cache space and memory access cycles. Figure 
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4-6 depicts the virtual platform vision, where the resource manager provides 
each subsystem with its own virtual platform, which are a share of the real 
SoC.  

6. RESOURCE RESERVATION MECHANISMS 

Resource reservation is a well-known technique to implement temporal 
and spatial isolation and to bound interference. A resource budget is a 
guaranteed resource reservation. The resource reservation mechanism 
consist of the following four components, identified in (Oikawa & Rajkumar 
1998). 
• The scheduling/arbitration/allocation algorithm determines the run time 

execution. The scheduling algorithm is such that it matches the budget 
requirements. 

• Accounting keeps track of budget usage.  
• Enforcement, denying resource availability when the budget is exhausted, 

is required to provide guarantees. 
• Admission control ensures that once a reservation has been accepted by 

the system, the budget will be guaranteed. 
Sections 6.1 through 6.3 detail these four components of the resource 

reservation mechanism for the three main SoC resources: processing cycles, 
cache space, and memory access cycles. 

6.1 Processing cycles  

Multiprocessor SoCs embed various providers of processing cycles, from 
a dedicated, non-shareable MPEG-2 accelerator to a multitasking 
programmable DSP. Managing resource reservations on a multitasking 
resource—shared by many tasks with diverse real-time requirements—is 
more challenging than managing access to a hardware accelerator that 
typically can handle only one task. Therefore, we focus on multitasking 
programmable processors. 
There are different implementations of processor reservation mechanisms 
(Lipari & Bini 2003), (Eide, Stack, Regehr, & Lepreau 2004),(Rajkumar, 
Juwa, Molano, & Oikawa 2001). We present our approach to processing 
cycles reservations in the following subsections. 

Resource users 

The users of processing cycles are the software subsystems, where the 
subsystem is temporally independent from other subsystems. Typically, 
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subsystems consist of collections of connected tasks. We distinguish two 
types of subsystems. 
• Media processing. This type of subsystem processes media streams with 

a highly regular pattern. A video decoder for example, produces a video 
frame every 20 milliseconds. The behavior of a media processing task 
can be described by a request period T, execution cycle requirement C,
and a deadline D, where D = T.

• Control: Control subsystems have an irregular activation pattern with a 
minimum inter-arrival time, and their expected response time is short 
(compared with the inter-arrival time). They can be described by a 
minimum inter-arrival time T , a processing-cycles requirement C, and a 
deadline D, where D << T.

Budget definition 

CPU-cycle budgets are provided to subsystems and must match the CPU 
cycle requirements of the subsystems, as described in the previous 
paragraph. Media processing subsystems typically require periodic budgets 
with a budget value C (number of processing cycles), a granularity T (period 
of activation), and a deadline D. A periodic budget is replenished at regular 
intervals. Control subsystems typically require sporadic budgets which 
provide a limited amount of computation budget, C, during a time interval 
called the budget replenishment period, T. The sporadic budgets preserve 
and limit a certain amount of CPU cycles for the control subsystems, while 
guaranteeing the deadlines of all the other subsystems in the system, even 
under burst conditions in the activation of control subsystems (i.e., large 
number of requests in a short time interval). The sporadic budget is easily 
incorporated into rate monotonic analysis (Klein 1993), because aperiodic 
activations can be analyzed as if they were periodic. 

Budgets can be strictly enforced, the subsystem receives only its 
requested C per T, or weakly enforced, a subsystem may receive more than 
requested if all other subsystems are out of budget. The advantage of strictly 
enforced budget is predictability: the subsystems always receive the same 
budget. The advantage of weak enforcement is high utilization. 

Scheduling algorithms 

The reservation algorithm for CPU cycles can be based on rate 
monotonic scheduling (RMS) or earlier deadline first (EDF) scheduling. 
These algorithms, (Liu & Layland 1973) were initially conceived for 
independent executing task. In our case, individual tasks are not independent 
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whereas subsystems are. The same reasoning that used to apply to tasks 
applies now to budgets. 
• Rate monotonic scheduling. Given fixed-priority scheduling, the optimal 

priority assignment for periodic budgets is the rate monotonic (RM) 
priority assignment. Budgets are ordered by increasing period, ties 
broken arbitrarily, i.e., i < j ⇔ Ti ≤ Tj. The budget scheduling mechanism 
is built on top of a regular fixed priority scheduler. At the start of each 
period, the priority of all tasks within the subsystem is raised to the 
subsystem’s running priority. When the subsystem budget is depleted, the 
subsystem’s priority is lowered to background priority. 

• Earliest deadline first scheduling. In earliest deadline first (EDF) 
scheduling, budgets are dynamically ordered by increasing deadlines, ties 
broken arbitrarily. At the start of each period, the deadline of the budget 
is set. The selected budget is the one with the earliest deadline among the 
non-zero budgets. 
 
In the case of weak enforcement, when all budgets are exhausted, a slack 

allocation mechanism is used to immediately allocate the otherwise wasted, 
volatile, processor cycles. For example, in the case of fixed-priority 
scheduling, a very simple slack-allocation algorithm consists of making all 
budgets eligible for execution on a round-robin basis, by giving them the 
same background priority. 

Accounting 

Accounting takes place in the CPU reservation module, which maintains 
a subsystem descriptor per subsystem. This subsystem descriptor contains a 
down counter that keeps track of the processing cycles used by the 
subsystem. Every task context switch, the accounting system determines 
which task (and which subsystem) has executed and for how long. The 
corresponding amount is deducted from the budget counter. The processor 
clock is used to keep track of the time. 

Enforcement 

The budget is enforced by using high precision (hardware) timers that are 
fired when a budget is exhausted or when a budget has to be replenished.  

Admission control 

For a single processor system, we use an admission control algorithm that 
corresponds to the scheduling algorithm being used. If the admission control 
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fails, the corresponding budgets cannot be guaranteed, therefore the 
subsystem corresponding to the budgets that causes the failure is not allowed 
to start (or to modify its resource requirements). When using RMS as 
scheduling algorithm a simple formula (1) for response time calculation 
from (Joseph & Pandya 1986) is used: 

� �
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In this formula, index i identifies the budget, Ti is the period, Ci is the 
budget capacity, Ri  is the response time, and hp(i) is the set of all budgets 
with priority higher than i. When using EDF, an even simpler capacity check 
(2) is used: 
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Note that it does not make sense to provide budgets to individual tasks in 
a single subsystem, because the temporal interdependencies among the tasks 
invalidate these acceptance tests assumptions. 

6.2 Cache space 

Caches are divided into cache lines, also called blocks. Cache lines are 
grouped into sets. A memory location is mapped to a cache set depending on 
its address and it can occupy any line within that set. A cache with 1 line per 
set is called direct-mapped, a cache with k lines per set is called k-way set-
associative, and a cache with only 1 set is called fully associative. When a 
line is loaded into the cache, the address determines the set into which the 
line is loaded. In a direct mapped cache, there is only one choice for 
replacement, determined by the address. In a k-way set-associative cache, 
there are k lines that can be victimized. 
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Figure 4-7. Generic cache architecture. 

Figure 4-7 shows a generic k-way set-associative cache architecture. The 
address of a load or store operation is first translated into a set index that 
uniquely identifies the set where the data is cached (if it is cached at all). 
Within each set there are k blocks. An associative search, tag matching, is 
required to determine which block, if any, contains the data corresponding to 
the specified address. If the addressed block is not found, one of the k blocks 
in the set is victimized: dirty data is copied from the victim block to memory, 
while the requested data is copied from memory to the victim block. 

Figure 4-8. L2 cache addressing. 

Figure 4-8 depicts how a cache block is addressed. Tag matching is used 
to locate the place within the set where the data is placed. Since tag matching 
is performed on the most significant bits, the data of e.g. one MPEG frame is 
distributed over all sets. Thus, a linear memory access pattern results in a 
uniform distribution of accesses over the cache. 

A known issue with hardware-managed caches is the interference 
between multiple independent software tasks that share the same cache. 
Various approaches in the literature address this problem. See, for example 
(Liedtke, Haertig, & Hohmuth 1997;Molnos, Heijligers, Cotofana, & van 
Eijndhoven 2005;Ravi 2004).  

In the SoC depicted in Figure 4-2, there are two types of caches: L1 and 
L2. The L1 cache is shared when the corresponding CPU supports 
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multitasking. Upon a task context switch, new task data is loaded into the 
cache, evicting the exiting-task data out from the cache. When the evicted 
task is executed once again, its data has to be reloaded, causing an extra 
performance penalty compared to the case when the task runs without 
interruption. However, in a multiprocessor system, the CPUs are typically 
dedicated to a small number of tasks: for example, one CPU takes care of 
coprocessor management, another takes care of network traffic, etc. As a 
result, the remaining CPUs can concentrate on running applications without 
being interrupted by housekeeping jobs. Consequently, L1 cache 
interference appears to be a less urgent problem in a multiprocessor than it is 
in a single CPU system.  

For the L2 cache, a different story applies. This single cache is shared 
concurrently by the tasks in the system. For example, a Linux operating 
system executing on one or more CPUs may suddenly require a lot of 
memory when it starts an Internet browser with Java support. We want to 
avoid that this action in the Linux domain evicts critical data and code 
sections in another domain, for example a real-time video codec running on 
the DSPs sharing the same L2 cache. We define a domain as the collection of 
tasks that share a determined cache space. 

In this section, we focus on a cache management mechanism for the L2 
cache. The following sections describe our approach to cache management 
to bound interference among the various application domains that execute 
concurrently on the multiprocessor. 

Resource users 

The users of the cache are the cache domains or collection of software 
tasks. The software tasks request from the cache load (read) and store (write) 
operations. This operation can result either on a hit (the requested data is 
cached) or a miss (the requested data is not in cache). Upon a cache miss, 
data has to be brought from main memory victimizing cached data. 

Budget definition 

Available cache partitioning methods (Liedtke, Haertig, & Hohmuth 
1997;Molnos, Heijligers, Cotofana, & van Eijndhoven 2005) allocate parts 
of the available cache sets exclusively to a subset of the executing tasks 
(Figure 4-9). The disadvantage of this approach is that it affects the memory 
model as seen by the software programmer. For example, if task A writes to 
memory location X, the data is cached in partition A. If task B reads from 
memory location X at a later moment in time, it cannot find the data in cache 
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partition B and consequently the stale data is loaded from memory into 
partition B. This is probably not what the programmer expected. 

Figure 4-9. Traditional cache partitioning. 

In contrast to set partitioning, we chose to partition the cache by limiting 
the number of ways a task can claim within each set in the cache. Figure 4-
10 depicts the resulting cache organization. Cache resource management is 
performed by allocating cache space to a domain. During cache lookup, all 
ways in the set are considered, including the ways associated with domains 
other than the one performing the lookup, i.e., any task can read or write any 
cache block with no restrictions. Consequently, the shared memory model 
remains intact. The programmer does not notice any functional difference 
between a traditional and a resource-managed cache. 

Figure 4-10. Cache way partitioning. 

A cache budget determines the maximum number of ways the domain 
can claim, say N. If each way corresponds to a fixed number of bytes, say M,
each budget corresponds to N*M bytes. The cache contains a bit vector for 
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every domain, where each way in the cache is associated with one bit in 
these vectors. By setting the bit vector in the cache, the system integrator can 
choose explicitly which domains share which cache ways. 

The task descriptor in the OS contains a field that identifies the domain 
the task belongs to. On every context switch, the OS copies this field to a 
hardware register. On a cache miss, the cache controller inspects this register 
to determine which domain is causing the miss and the victim is selected 
from the ways belonging to this domain. 

There are two types of reservations. Cache reservations can overlap 
(domains can share ways) or be disjoint (no ways are shared). When two 
domains share a way, in the worst case, one of these domains can evict all 
data of the other domain from the cache. If all domains reserve disjoint 
ways, the reservation is not shared: tasks belonging to domain A cannot evict 
data from domain B. Overlapping domains are useful when the worst case 
cache requirement is far from the average. Each domain reserves disjoint 
space to be used during normal behavior and overlapping ways for the worst 
case. 

Replacement algorithm 

The replacement algorithm, that selects which cache block is victimized, 
is the equivalent of the scheduling algorithm for the CPU. The cache 
employs a random replacement strategy. When a task belonging to domain 
causes a refill, a victim block is selected from the corresponding domain, 
such that the number of ways associated with the domain in the set does not 
exceed the predetermined budget for the domain. The replacement algorithm 
only applies during a cache refill, following a cache miss.  

Accounting 

Accounting has to keep track of the number of ways allocated to a 
particular domain in a particular set of the cache.  

Enforcement 

If a bit is set in the vector of a selected domain, the domain can access 
the cache blocks in the way corresponding to the bit position in the vector. 

Admission control 

The admission control for a cache reservation request is simple. The total 
amount of requested space should not exceed the total cache size.  
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6.3 Memory access cycles 

As presented in Section 3, data transfer to and from memory is becoming 
the main system bottleneck. As an example, Figure 4-11. depicts the 
structure of the memory path of the SoC. The memory controller has three 
available ports. Two of these ports are used by the refill and victim engines 
of the L2 cache. The third port is used by the hardware accelerators. 

Figure 4-11. Memory controller ports. 

This section focuses on the memory access cycles: the cycles available 
for data transfer from the memory controller ports to the off-chip memory. 
Similar to processing cycles, memory access cycles constitute a volatile 
resource: a memory access cycle that is not granted to a requester is lost 
forever. However, the allocation granularity for memory access cycles is a 
few orders of magnitude smaller than the allocation granularity for CPU 
cycles. 

The order in which requests are presented to the memory has a large 
impact on the efficiency of the memory access. For example, if a write 
transfer follows a read transfer, the transition overhead, which consists of the 
cycles needed to invert the direction of the data channel, is similar to the cost 
of the transfers. It is very difficult, if not impossible, to guarantee net 
transfer cycles (excluding overhead cycles). Instead, gross transfer cycles 
(including overhead cycles) rather than net transfer cycles are guaranteed, 
and overhead cycles are attributed to the request that causes the overhead.  

The reservation scheme for memory access cycles assumes a mix of low-
latency traffic and high-bandwidth traffic and tries to minimize the average 
latency for the low-latency traffic while meeting the bandwidth requirements 
for the high-bandwidth traffic. Typically, cache engines generate low-
latency traffic, whereas hardware accelerators generate high-bandwidth 
traffic.  
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Resource users 

On behalf of the tasks they execute, hardware blocks and cache engines 
issue memory requests that consume memory access bandwidth. The arrival 
and servicing of memory requests is described by two functions of the 
number of memory-clock cycles (t): the request function R and the supply 
function S. Both functions are taken from (Feng & Mok 2002), and are 
depicted in Figure 4-12.

Figure 4-12. Request and supply functions. 

The request function R(t) represents the total number of cycles requested 
in the interval (0, t), whereas the supply function S(t) represents the total 
number of cycles supplied in the interval (0, t). R(t) is a simple staircase 
function, for which every step represents the arrival of one or more multi-
cycle requests. If the requests arriving at tR have total gross size s(s ≥0), then 

lim ( )
5W W

R t
↓

= R(tR) + s. (1) 

In the S(t) function, supply intervals alternate with still intervals. Cycles 
are supplied in the supply intervals only: 

S(t + ∆t) = S(t ) + ∆t, when (t, t + ∆t) is a supply interval; (2)  

S(t + ∆t) = S(t ),          when ( t, t + ∆t) is a still interval. (3) 

The number of supplied cycles can never be larger than the number of 
requested cycles. A request is characterized by size s, arrival time tR , start 
time tS

 , completion time tC, and latency λ. From tR to tS , the request is 
pending; from tS to tC, the request is being serviced. (tS, tC ) is the service 
interval for the request. 
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S(t ) ≤ R(t ). (4) 

tS = max{t | S(t) = R(tR)}.  (5) 

tC = min{t | S(t) = R(tR) + s}.  (6) 

λ = tC − tR. (7) 

Different requesters will be identified by an index to the request and 
supply functions. For requester i, the request and supply functions are 
denoted Ri(t) and Si(t). Since every cycle can be supplied at most once, 
different requesters have disjoint supply intervals: 

 Si(t + ∆t) = Si(t) + ∆t ⇒ Si(t + ∆t) = Sj(t) ∀ j ≠ i. (8) 

Typically, there are two different types of hardware blocks, with different 
request characteristics and different service requirements. High-bandwidth 
requests, typically issued by hardware accelerators, tend to have a regular 
request pattern, and require effective use of memory bandwidth. In media 
systems, these requests represent the bulk of the traffic. High-bandwidth 
traffic generally has latency requirements that are individually, but not 
tightly, bounded. Low-latency requests have an irregular request pattern with 
potentially large bursts, and require low average latencies. Individual request 
do not have bounded latency requirements. Low-latency bursts can be 
accommodated because of the relatively large latency bounds of the regular 
traffic. 

The descriptions in this section are restricted to a single low-latency 
requester (LL) and a single high bandwidth requester (HB). This 
simplification helps to focus on the quintessence of the reservation 
mechanism. In this area, research is still in progress and details are not yet 
available for publication.  

Budget definition 

The budget definition for the low-latency budget is given in two steps. In 
the first step, we make a simplifying assumption: the budget boundaries are 
assumed to be hard, i.e., out-of-budget cycles are not supplied, even if no 
other requester is contending for them. With this assumption, the reservation 
mechanism is non-bandwidth preserving (idle memory cycles while requests 
are pending), but easy to explain. In the second step, this assumption is 
dropped. 
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The low-latency budget (LL) can be compared to a credit card, where the 
customer borrows from the bank, and pays back later. LL goes through a 
sequence of active and inactive intervals. During an active interval, LL is 
either borrowing or paying its debt.  

By definition, an active interval starts at t = 0. During each active 
interval, the low-latency budget is defined by two functions UBLL(t) and 
LBLL(t), the upper and lower bound, respectively. In the first step we assume 
that these functions bound the supply function SLL(t) directly: 

LBLL(t) ≤ SLL(t) ≤ UBLL(t) (9) 

Figure 4-13 depicts one active interval of a low-latency budget. The gray 
band represents the bounds that the budget imposes on SLL(t). At this point in 
time, LL is requesting, and SLL(t) starts its first supply interval after the 
arrival of the pending request(s). At t = 0, SLL(t) starts its first supply 
interval, and LL becomes active. At t = a, the upper bound is hit, no more 
credit is available, and the requester starts paying back. At t = b, there is 
sufficient credit again to resume supplying. At t = c, there are no more 
requests pending, and the requester starts paying back again. At t = d, a new 
burst of requests arrives. At t = e, supplying resumes. Finally, at t = e, the 
complete debt has been paid back. If there is no request pending and there is 
no remaining debt, the requester becomes inactive.  

Figure 4-13. Low latency contract. 

The lower bound corresponds to a function ρt, where ρ is a fraction of 
the available cycles, with 0< ρ << 1. The vertical distance between the two 
bounds, σ, determines the burst size accommodated by the budget. The σ
and ρ parameters are taken from the sigma/rho (σ/ρ) abstraction, used for 
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traffic characterization in network calculus (Cruz 1991). With these 
parameters, the low-latency budget is given by 

UBLL(t) = ρt + σ, (10) 

LBLL(t) = ρt. (11) 

This completes the first step, in which we assumed that upper bound is 
hard. This hard upper bound implies that out-of-budget supply is not 
allowed, even when HB is not requesting. This is a waste of bandwidth, and 
has a negative impact on the average LL latency as well.  

When the upper bound is not hard, equation (9) does not necessarily hold. 
To define soft bounds, some additional terminology is needed. The functions 
IBS(t), intra-budget supply, and XBS(t, ∆t), extra-budget supply, are defined 
by the following equations:  

S(t+∆t) = S(t)+∆t
⇒ IBS(t+∆t) = min(IBS(t)+∆t, UB(t+∆t)), (12) 

S(t+∆t) = S(t)
⇒ IBS(t+∆t) = max(IBS(t), LB(t+∆t)), (13) 

IBS(t’) = UB(t’) ∀t’∈(t, t+∆t)
⇒ XBS(t, t+∆t) = (S(t+∆t) – S(t)) – (UB(t+∆t) – UB(t)), (14)  

IBS(t’) < UB(t’) ∀t’∈(t, t+∆t)
⇒ XBS(t, t+∆t) = 0, (15) 

IBSLL(t) can take values between 0 and σLL. XBSLL(tS, tC) > 0, extra-budget 
supply for an LL request with service interval (tS, tC), is allowed only if HB is 
not requesting at tS.

Arbitration algorithm 

The arbitration algorithm decides on how to allocate the cycles. It is priority-
based, and uses three priorities, two for LL (default and limit), and one for 
HB. The LL default priority is higher than the HB priority; the LL limit 
priority is lower than the HB priority. In the CPU domain, this dual priority 
scheme is known from bandwidth-limiting servers(Burns & Wellings 1993). 
In the following subsections it becomes clear when these priorities apply. 

Arbitration is non-preemptive. Ongoing transfers are completed, even 
when a higher-priority request arrives. This has to be the case, because 
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preemption is detrimental to the efficiency of the memory (causes many 
overhead cycles). In the discussion of the enforcement mechanism, the 
consequences of the choice are addressed in more detail.  

The description of the implementation corresponds to a very elegant 
solution, conceived by Hans van Antwerpen at Philips Semiconductors, used 
in the arbiter of a double data rate (DDR) memory controller (de Oliveira & 
van Antwerpen 2003). 

Accounting 

The accounting mechanism is depicted in Figure 4.12. It uses a saturating 
counter ACCOUNT, which saturates at 0 and CLIP. ACCOUNT is initially 
0, and is increased or decreased every cycle. ACCOUNT keeps track of 
IBSLL(t). It is updated every cycle. If the cycle is allocated to the requester, 
ACCOUNT is increased with DEN − NUM, otherwise it is decreased with 
NUM. NUM stands for Numerator, and DEN stands for Denominator.  

NUM/DEN = ρLL. (16) 

CLIP/NUM = σLL/(1−ρLL). (17) 

ACCOUNT/NUM = IBSLL(t). (18) 

In the budget definition, NUM, DEN and CLIP replace the original ρ and 
σ. One of these values can be freely chosen, the others then follow from (16) 
and (17). Choosing a round value for NUM, which is somewhat counter 
intuitive, the CLIP value becomes more intuitive. 
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Figure 4-14. Priorities, accounting, and enforcement. 

Enforcement 

Enforcement makes sure that the LL priorities are switched at the 
appropriate times. The decision to raise or lower the LL priority is based on 
comparing ACCOUNT with a threshold LIMIT. If ACCOUNT < LIMIT, 
then LL has default priority; otherwise, LL has limit priority. If max(sLL) is 
the maximum gross LL request size, then  

LIMIT = CLIP − max(sLL)*NUM. (19) 
 
The threshold value LIMIT must be such that the boundary constraint of 

the LL budget is satisfied. Extra-budget supply, XBSLL(tS, tC) > 0, requires 
that IBSLL(tS) > σLL − s, where s is the size of the request. Because of (16) 
through (19), this implies ACCOUNT > LIMIT at tS, which in turn implies 
that LL has limit priority at tS. If LL has limit priority, the request can only be 
serviced if HB is not requesting. Hence, extra-budget supply is only possible 
if HB is not requesting, which was the desired effect. 

For implementation simplicity, LIMIT is currently implemented as a 
programmable parameter. In order to minimize the number of stall cycles, 
the DDR controller has a small queue of LL requests after arbitration. Hence, 
in a real implementation, LIMIT/NUM has to be larger than max(sLL), 
depending on the size of this queue. 
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Admission control 

By definition, admission control decides if a certain combination of contracts 
is feasible. Since there is only one contract, there is no admission control. 

7. CONCLUSION 

A major source of robustness problems in current generation systems is 
the unpredictable behavior caused by interference among concurrently 
executing applications that compete for access to shared system resources—
such as processor cycles, cache space, and memory access cycles. 
Traditionally, these aversive effects of interference could be kept under 
control by deploying a real-time OS in combination with a sufficient degree 
of over provisioning. 

For today's systems, this approach is no longer viable. The price erosion 
in the consumer electronics market forces chip vendors to integrate more and 
more functionality in an SoC, at the expense of system robustness. For 
instance, while previous generation SoCs separated real-time audio/video 
hardware from general-purpose hardware to handle user events, today's 
multiprocessor SoCs deploy generic processor and interconnect hardware 
that handle both. 

This chapter outlines an approach to bound interference among 
independently developed subsystems. The system provides each subsystem 
with an execution environment—called a virtual platform—that emulates the 
environment in which the subsystem was developed and tested. A subsystem 
reserves a share of each required system resource. This set of reservations 
defines the virtual platform. All shared resources in the virtual platform must 
provide guaranteed reservations to subsystems, or deny a reservation request 
when the request exceeds the available capacity. The research challenge 
towards such compositional systems is threefold. 
• Define hooks in hardware and software with associated strategies to 

provide and guarantee reservations for every shared system resource. 
• Provide an overall resource management strategy that integrates the 

individual reservation strategies of each shared resource. 
• Define an approach to characterize subsystems in terms of execution 

requirements that can be translated into the desired resource reservations. 
 
This chapter takes on the first challenge and presents reservation 

mechanisms for the key resources in a multiprocessor SoC: processor cycles 
of a CPU, cache space in an L2 cache that is shared among multiple 
processors, and memory cycles arbitrated by a DDR memory controller. The 
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described DDR controller is currently deployed in Philips Nexperia 
solutions, while the processor reservations are proposed for integration in 
embedded operating systems, such as CE Linux. The presented cache space 
reservations are targeted for inclusion in the next generation Philips 
Nexperia SoCs. 
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