
Chapter 4

RESOURCE RESERVATIONS IN SHARED-
MEMORY MULTIPROCESSOR SOCS

Clara Otero Pérez, Martijn Rutten1,

Liesbeth Steffens, Jos van Eijndhoven, Paul Stravers

Philips Research Laboratories, Eindhoven, The Netherlands
1 Philips Semiconductors, Eindhoven, The Netherlands

Abstract: Consumer electronics vendors increasingly deploy shared-memory
multiprocessor SoCs, such as Philips Nexperia, to balance flexibility (late
changes, software download, reuse) and cost (silicon area, power
consumption) requirements. With the convergence of storage, digital
television, and connectivity, these media-processing systems must support
numerous operational modes. Within a mode, the system concurrently
processes many streams, each imposing a potentially dynamic workload on the
scarce system resources. The dynamic sharing of scarce resources is known to
jeopardize robustness and predictability. Resource reservation is an accepted
approach to tackle this problem. This chapter applies the resource reservation
paradigm to interrelated SoC resources: processor cycles, cache space, and
memory access cycles. The presented virtual platform approach aims to
integrate the reservation mechanisms of each shared SoC resource as the first
step towards robust, yet flexible and cost-effective consumer products.

Key words: Virtual platform, multiprocessor system, shared resources, shared memory

1. INTRODUCTION

The convergence of consumer applications in the TV, PC, and storage
domains introduces new combinations of features and applications that
execute in parallel. In addition, consumer multimedia devices are becoming
increasingly flexible. Flexibility enables accommodating late changes in

2 Chapter 4

standards or product scope during system design, and allows in the field
upgrades. To address the flexibility and concurrency requirements, consumer
electronics vendors increasingly deploy heterogeneous multiprocessors
systems.

The high production volume of consumer products sets severe
requirements on the product cost, leading to resource-constrained devices.
To achieve a cost effective solution, expensive resources, such as memory
and processor time, are shared among concurrent applications.

A typical multimedia application consists of independently developed
subsystems with strong internal cohesion. At the subsystem borders, the real-
time requirements are decoupled from the other subsystems. However,
resource sharing induces temporal interference among otherwise temporal
independent subsystems given the highly dynamic workload of the targeted
media applications, such as audio/video coding, image improvement, and
content analysis. Figure 4-1. depicts the load fluctuations (in time) of two
independent subsystems sharing a resource. At a given point in time, both
subsystems require more resources than the total available and one (or both)
of the subsystems will suffer.

Figure 4-1. Load fluctuations of independent subsystems.

The concurrent execution of dynamic applications on shared resources is
a potential source of interference, which leads to unpredictability and
jeopardizes overall system robustness. We aim to bound interference by
isolating and protecting independent subsystems from each other, while
preserving typical qualities of multimedia devices, such as robustness and
cost effectiveness.

Resource reservation is a well-known technique in operating system
research to improve robustness and predictability. It is based on four
components, admission control, scheduling, accounting, and enforcement.
When properly combined, they provide guaranteed resource reservations.
Resource reservations consist at least of two basic parameters: share and
granularity. For example, a share of 5 milliseconds and a time granularity of

4. Resource reservations in shared-memory multiprocessor SoCs 3

20 milliseconds determine a processing time reservation. Different resources
have various types and degrees of share-ability. For example, a
programmable processor is shareable in time and fully preemptable. An
MPEG-2 (video coding) hardware accelerator may decode one high-
definition stream or decode two standard-definition streams in time-shared
fashion. Memory is shared in space.

To bound interference at system level, the multimedia device must
provide the subsystems with a reservation mechanism for each resource. By
configuring the resource reservations, we create an execution platform that is
tailored to the resource needs of the subsystem. We term this a virtual
platform. A virtual platform provides guaranteed resource availability, while
restricting resource usage to a configured maximum.

2. RELATED WORK

Multiprocessor systems on chip (SoC) are rapidly entering the high-
volume electronics market. Example SoC platforms are Philips Nexperia (de
Oliveira & van Antwerpen 2003), Texas Instruments OMAP(Cumming
2003), and STMicroelectronics StepNP (Paulin, Pilkington, & Bensoudane
2002). A mayor challenge for these multiprocessor systems is to effectively
use the available resources and maintain a high degree of robustness.
Currently, these systems do not explicitly address interference between
software modules that compete for shared system resources. The robustness
problems caused by interference are typically evaded by a high degree of
over provisioning.

Various research efforts address interference for specific resources
through processor resource reservations (Lipari & Bini 2003), (Eide et al.
2004), (Baruah & Lipari 2004), interconnection guarantees, Chapter 1 of this
book (Goossens & González Pestana 2004), and cache partitioning (Liedtke,
Haertig, & Hohmuth 1997),(Molnos et al. 2005). For instance, Ravi (Ravi
2004) presents various mechanisms for cache management based on priority
assignment and enforcement. Recent research aims for integrated approaches
that considers combination of resources such as processor and network
reservations(Rajkumar et al. 2001), (Nolte & Kwei-Jay 2002). We take one
step further and develop an integrated approach to bound interference for all
shared resources in upcoming multiprocessor systems. Our multi-resource
reservation is the base for defining an embedded virtual platform.

Numerous systems have been designed which use virtualization to
subdivide the ample resources of a modern computer since IBM introduced
the 360 model 67, in 1967. In a traditional virtual machine (VM), the virtual
hardware exposed is functionally identical to the underlying machine

4 Chapter 4

(Seawright & MacKinnon 1979). However, full virtualization is not always
desired. Some of the disadvantages lead to a performance penalty that
current high volume electronics vendors are not willing to pay. One of the
goals of recent research on virtualization is to overcome these disadvantages.
Rather than attempting to emulate some existing hardware device, the Xen
VM research of Barham et al. (Barham et al. 2003) exposes specially
designed block (device and network) interface abstractions to host operating
systems, in what they call paravirtualization. Barham et al. assume full
resource availability. It is not clear whether or how their approach provides
guarantees and performs admission control. The severe cost requirements in
the consumer electronics domain oblige us to provide resource guarantees
for resource-constrained systems.

The remainder of this paper is organized as follows. Section 3 describes a
embedded system consisting of a multiprocessor SoC in which concurrent
media applications execute. The interference problem is explored in Section
4 and the concept of virtual platform as a solution to bound interference is
introduced in Section 5. Section 6 presents the different reservation
mechanism for the three main SoC resources (processor cycles, cache space
and memory access cycles) used to implement the virtual platform. Finally,
the conclusion is drawn in Section 7.

3. MULTIPROCESSOR SYSTEM

Multiprocessor SoCs are deployed to cope with the market demand for
high performance, flexibility, and low cost. Progressive IC technology steps
reduce the impact of programmable hardware on the total silicon area and
power budget. This permits SoC designers to shift more and more
functionality from dedicated hardware accelerators to software, in order to
increase flexibility and reduce hardware development cost. However, for at
least the coming decade, these multiprocessor SoCs still combine
flexibility—in the form of one or more programmable central processing
units (CPU) and digital signal processors (DSP)—with the performance
density of application-specific hardware accelerators. Figure 4-2 depicts
such a heterogeneous SoC architecture as presented in Chapter 5 of this book
(van Eijndhoven et al. 2005) and (Stravers & Hoogerbrugge 2001). In
providing a virtual platform for upcoming SoCs, we have to cope with the
interaction between processing in hardware and software.

4. Resource reservations in shared-memory multiprocessor SoCs 5

Figure 4-2. Heterogeneous SoC architecture with CPUs, DSPs, and accelerators
communicating through shared memory.

With progressive technology steps, processing power and memory sizes
increase, keeping the pace with the memory and processing capacity
requirements imposed by media applications. In contrast, memory
bandwidth scales slowly and memory latency remains almost the same.
Thus, memory bandwidth and latency are becoming the dominant system
bottleneck.

Figure 4-3 details the data path of a multiprocessor such as in Figure 4-2,
in which a number of DSPs, CPUs, and accelerators communicate through
shared memory. The architecture applies a two-level cache hierarchy to
reduce memory bandwidth and latency requirements. The cache hierarchy is
inclusive: a memory block can only be in a L1 cache if it also appears in the
L2 cache. When a processing unit produces new data and stores it in its L1
cache, the L2 copy of that memory block becomes stale; in such cases a
cache coherence protocol ensures that any consumer of the data always
receives the updated L1 copy of the data. Furthermore, such a coherent
communication network allows direct L1-to-L1 cache transfers, e.g. when a
consumer task on processing unit A reads data from a producer task on
processing unit B. At any moment in time, a modified data item resides only
in one L1 cache. This property is intended to facilitate the partitioning of
applications, consisting of multiple producer/consumer tasks, over multiple
processors.

6 Chapter 4

Figure 4-3. Data path for the memory hierarchy.

The applications we are dealing with are media applications (mainly audio
and video). Figure 4-4 depicts an example of a media application (Otero
Pérez et al. 2003). Such applications are also known as streaming
applications, because they process streams of data. A stream is a sequence of
data objects of a particular type (audio samples, video pictures, video lines,
or even pixels). For example, a video stream is a sequence of pictures, with a
given picture rate: the number of pictures to be displayed per second. A
stream is typically produced by one streaming task and consumed by some
other concurrent asynchronous streaming task. The part of the stream that
has been produced but not yet consumed, is temporarily stored in a buffer, or
is being transferred, from producer to buffer, or from buffer to consumer.

Figure 4-4. Media application example.

4. Resource reservations in shared-memory multiprocessor SoCs 7

Our execution model for streaming applications consists of a connected
graph in which the nodes represent either a task (an independent,
asynchronous, active component that uses processing and memory
resources) or a buffer (a passive component that uses memory resources).
The interconnections represent the data transfer (memory access). The
execution model is hierarchical. At higher levels of abstraction, a connected
graph can again be viewed as a subsystem in a connected graph. Figure 4-4
depicts four such subsystems: main, pip, disk, and user interface (UI). The
subsystems are denoted with the rounded rectangles.

4. INTERFERENCE AMONG SUBSYSTEMS

The pressure on time-to-market, the emergence of multi-site
development, and the ever-increasing size of software stacks are just some of
the factors that enforce a radical change in the development of modern
(multimedia) applications. In the past software systems were almost
completely written from scratch as fully self-contained systems, developed
under one roof. These days, systems are increasingly composed of
independently developed subsystems, originating from different locations
and in many cases from different companies. These subsystems are not
designed as a specific part of a whole, but are intended to be deployed in
many different systems, and serve different ranges of products.

Ideally, each subsystem is evaluated and tested in isolation for a specific
system. The job of the system integrator is to mix and match the subsystems
to compose the final system. Unfortunately, current subsystems are not
compositional. The ad-hoc and implicit way in which the scarce SoC
resources are managed, and the unbounded interference caused by resource
sharing, introduces temporal interdependencies among these initially
independent subsystems. If not properly managed, these interdependencies
lead to unpredictable behavior for the integrated system.

Media-processing SoCs rely on priority scheduling in embedded real-
time operating systems, such as VxWorks and pSOS, to manage real-time
requirements. The current setting of priorities is an example of ad-hoc
management. Traditionally, priorities were used to manage resource
utilization in closed, real-time systems, where task activations and execution
time are deterministic. Under these conditions, well-known priority
assignment methods, such as rate monotonic assignment (Liu & Layland
1973), work fine. However, media-processing tasks tend to violate many of
these assumptions, e.g., by generating idle time, dynamically fluctuating
workloads, jitter, etc. The subsystem designers have to rely on trial and error
to obtain a working system. Moreover, at integration time, when all tasks in

8 Chapter 4

all subsystems come together, the integrator has to start again from scratch.
The priority assignment of the subsystem tasks cannot be reused in the
integrated system, and the system integrator is faced with the difficult task of
evaluating different priority settings, while other factors such as importance
of the task or response time requirements influence the priority assignment.

A second example is the priority assigned to the various processors for
bus access. The processor’s bus priority is fixed and unrelated to the tasks
executed by the processors. Oftentimes, the priority setting is based on a
complex relation among the various tasks that might execute on that
processor.

The use of a cache introduces a third example of unpredictability, due to
the difficulty in predicting when certain data is available in the cache or still
has to be fetched from off-chip memory, causing the processor to stall.
Interrupts in combination with caches are a further cause of unbounded
interference. A typical system relies on interrupts to activate hardware
accelerator, to handle exceptions, to wake up software tasks, etc. An
interrupt causes a context switch, evicting the running task from the
processor and invalidating the task data present in the cache. When the
running task resumes execution, potentially all its data has to be fetched
again from memory. Therefore, it is very difficult to determine an upper
bound for the performance impact caused by interrupts in cache-based
systems.

We conclude from the previous paragraphs that resource management
based on bounding interference constitutes the foundation for compositional
system design. We propose an integrated approach to resource management
based on guaranteed resource reservation for all shared SoC resources,
tailored to the needs of the resource consumers (subsystems). The concept of
a virtual platform—as outlined in the next section—summarizes our
approach towards such integration.

5. VIRTUAL PLATFORM

A virtual platform provides guaranteed resource availability, while
restricting resource usage to a configured maximum. Like the real platform,
a virtual platform provides a wide variety of resources: programmable
processors, function specific hardware, memory space, memory access
bandwidth, and interconnect bandwidth. In a SoC, a virtual platform can be
implemented in various ways. For example, a set of tasks can execute
concurrently on multiple slow processors or sequentially on a fast processor.

The implementation of a virtual platform is based on resource reservation
mechanisms that provide temporal and spatial isolation among subsystems.

4. Resource reservations in shared-memory multiprocessor SoCs 9

The resource manager is responsible for providing virtual platforms by
ensuring that sufficient resources are reserved. For that, a resource
reservation mechanism, for each main SoC resource, guarantees the
availability of resources. As depicted in Figure 4-5, the resource manager
translates subsystem requirements and sets the parameters for the virtual
platform. This requires appropriate knowledge of the demands of the
individual subsystems in terms of the specific platform resources.
Characterizing performance and behavior of the subsystems is a subject of
research, fundamental to the realization of a virtual platform.

Figure 4-5. Subsystems and virtual platforms.

Furthermore, to actually deploy the virtual platform concept, the
following three issues must be resolved. Firstly, to provide a virtual
platform, the resource manager has to coordinate the resource reservations
for each resource. For that, the interdependencies among resources must be
modeled and analyzed. The effective CPU speed depends on the reservations
made in the memory architecture, such as cache and bus bandwidth. For
example, a memory controller that schedules processor requests to memory
guarantees a given average latency for a given processor. This latency is
used to calculate the execution time of a subsystem on this processor and
determines its processing budget.

Secondly, the reservation of a resource in the resource hierarchy may not
be based on the virtual platform using the resource, but on the actual
physical components using this resource. An example is memory bandwidth.
This bandwidth is allocated to the physical processors accessing the memory
independently from which virtual platform this processor is allocated to. As
a virtual platform is, in general, implemented by several physical processors,
a complex hierarchical set of interdependencies is created. These

10 Chapter 4

interdependencies are very difficult to understand and to analyze. Note that
this complexity is not introduced by the virtual platform concept itself, but is
inherently present in current SoC architectures and must be solved
independently of the virtual platform.

Finally, given the dynamic behavior of the software, absolute guarantees
are only possible when the reservations are based on worst-case load. For
cost effectiveness reasons, this is unfeasible even if the worst-case load
would be known (which is typically not the case). Structural load
fluctuations can (to a limited extent) be addressed in the virtual platforms by
reallocating unused reservations or dynamically adapt the reservations to
increase/decrease the virtual platform capacity. However, high-volume
electronics products stress the platform resource utilization to the limit. At a
given point, the required load of the concurrently executing subsystem will
exceed the resource capacity and some subsystem will experience a resource
shortage. Resolving temporal overloads within a subsystem is specific to
each subsystem; it is therefore the responsibility of the subsystem to resolve
this.

Figure 4-6. Providing virtual platforms to subsystems.

The following section presents the first step towards implementing a
virtual platform: the resource reservation mechanisms for the three main
SoC resources: CPU cycles, cache space and memory access cycles. Figure

4. Resource reservations in shared-memory multiprocessor SoCs 11

4-6 depicts the virtual platform vision, where the resource manager provides
each subsystem with its own virtual platform, which are a share of the real
SoC.

6. RESOURCE RESERVATION MECHANISMS

Resource reservation is a well-known technique to implement temporal
and spatial isolation and to bound interference. A resource budget is a
guaranteed resource reservation. The resource reservation mechanism
consist of the following four components, identified in (Oikawa & Rajkumar
1998).
• The scheduling/arbitration/allocation algorithm determines the run time

execution. The scheduling algorithm is such that it matches the budget
requirements.

• Accounting keeps track of budget usage.
• Enforcement, denying resource availability when the budget is exhausted,

is required to provide guarantees.
• Admission control ensures that once a reservation has been accepted by

the system, the budget will be guaranteed.
Sections 6.1 through 6.3 detail these four components of the resource

reservation mechanism for the three main SoC resources: processing cycles,
cache space, and memory access cycles.

6.1 Processing cycles

Multiprocessor SoCs embed various providers of processing cycles, from
a dedicated, non-shareable MPEG-2 accelerator to a multitasking
programmable DSP. Managing resource reservations on a multitasking
resource—shared by many tasks with diverse real-time requirements—is
more challenging than managing access to a hardware accelerator that
typically can handle only one task. Therefore, we focus on multitasking
programmable processors.
There are different implementations of processor reservation mechanisms
(Lipari & Bini 2003), (Eide, Stack, Regehr, & Lepreau 2004),(Rajkumar,
Juwa, Molano, & Oikawa 2001). We present our approach to processing
cycles reservations in the following subsections.

Resource users

The users of processing cycles are the software subsystems, where the
subsystem is temporally independent from other subsystems. Typically,

12 Chapter 4

subsystems consist of collections of connected tasks. We distinguish two
types of subsystems.
• Media processing. This type of subsystem processes media streams with

a highly regular pattern. A video decoder for example, produces a video
frame every 20 milliseconds. The behavior of a media processing task
can be described by a request period T, execution cycle requirement C,
and a deadline D, where D = T.

• Control: Control subsystems have an irregular activation pattern with a
minimum inter-arrival time, and their expected response time is short
(compared with the inter-arrival time). They can be described by a
minimum inter-arrival time T , a processing-cycles requirement C, and a
deadline D, where D << T.

Budget definition

CPU-cycle budgets are provided to subsystems and must match the CPU
cycle requirements of the subsystems, as described in the previous
paragraph. Media processing subsystems typically require periodic budgets
with a budget value C (number of processing cycles), a granularity T (period
of activation), and a deadline D. A periodic budget is replenished at regular
intervals. Control subsystems typically require sporadic budgets which
provide a limited amount of computation budget, C, during a time interval
called the budget replenishment period, T. The sporadic budgets preserve
and limit a certain amount of CPU cycles for the control subsystems, while
guaranteeing the deadlines of all the other subsystems in the system, even
under burst conditions in the activation of control subsystems (i.e., large
number of requests in a short time interval). The sporadic budget is easily
incorporated into rate monotonic analysis (Klein 1993), because aperiodic
activations can be analyzed as if they were periodic.

Budgets can be strictly enforced, the subsystem receives only its
requested C per T, or weakly enforced, a subsystem may receive more than
requested if all other subsystems are out of budget. The advantage of strictly
enforced budget is predictability: the subsystems always receive the same
budget. The advantage of weak enforcement is high utilization.

Scheduling algorithms

The reservation algorithm for CPU cycles can be based on rate
monotonic scheduling (RMS) or earlier deadline first (EDF) scheduling.
These algorithms, (Liu & Layland 1973) were initially conceived for
independent executing task. In our case, individual tasks are not independent

4. Resource reservations in shared-memory multiprocessor SoCs 13

whereas subsystems are. The same reasoning that used to apply to tasks
applies now to budgets.
• Rate monotonic scheduling. Given fixed-priority scheduling, the optimal

priority assignment for periodic budgets is the rate monotonic (RM)
priority assignment. Budgets are ordered by increasing period, ties
broken arbitrarily, i.e., i < j ⇔ Ti ≤ Tj. The budget scheduling mechanism
is built on top of a regular fixed priority scheduler. At the start of each
period, the priority of all tasks within the subsystem is raised to the
subsystem’s running priority. When the subsystem budget is depleted, the
subsystem’s priority is lowered to background priority.

• Earliest deadline first scheduling. In earliest deadline first (EDF)
scheduling, budgets are dynamically ordered by increasing deadlines, ties
broken arbitrarily. At the start of each period, the deadline of the budget
is set. The selected budget is the one with the earliest deadline among the
non-zero budgets.

In the case of weak enforcement, when all budgets are exhausted, a slack

allocation mechanism is used to immediately allocate the otherwise wasted,
volatile, processor cycles. For example, in the case of fixed-priority
scheduling, a very simple slack-allocation algorithm consists of making all
budgets eligible for execution on a round-robin basis, by giving them the
same background priority.

Accounting

Accounting takes place in the CPU reservation module, which maintains
a subsystem descriptor per subsystem. This subsystem descriptor contains a
down counter that keeps track of the processing cycles used by the
subsystem. Every task context switch, the accounting system determines
which task (and which subsystem) has executed and for how long. The
corresponding amount is deducted from the budget counter. The processor
clock is used to keep track of the time.

Enforcement

The budget is enforced by using high precision (hardware) timers that are
fired when a budget is exhausted or when a budget has to be replenished.

Admission control

For a single processor system, we use an admission control algorithm that
corresponds to the scheduling algorithm being used. If the admission control

14 Chapter 4

fails, the corresponding budgets cannot be guaranteed, therefore the
subsystem corresponding to the budgets that causes the failure is not allowed
to start (or to modify its resource requirements). When using RMS as
scheduling algorithm a simple formula (1) for response time calculation
from (Joseph & Pandya 1986) is used:

� �

*L
L L M L

M KS L M

RR C C D
T∈

= + ≤

∑ . (1)

In this formula, index i identifies the budget, Ti is the period, Ci is the
budget capacity, Ri is the response time, and hp(i) is the set of all budgets
with priority higher than i. When using EDF, an even simpler capacity check
(2) is used:

1L

DOO L L

C
T

≤∑ . (2)

Note that it does not make sense to provide budgets to individual tasks in
a single subsystem, because the temporal interdependencies among the tasks
invalidate these acceptance tests assumptions.

6.2 Cache space

Caches are divided into cache lines, also called blocks. Cache lines are
grouped into sets. A memory location is mapped to a cache set depending on
its address and it can occupy any line within that set. A cache with 1 line per
set is called direct-mapped, a cache with k lines per set is called k-way set-
associative, and a cache with only 1 set is called fully associative. When a
line is loaded into the cache, the address determines the set into which the
line is loaded. In a direct mapped cache, there is only one choice for
replacement, determined by the address. In a k-way set-associative cache,
there are k lines that can be victimized.

4. Resource reservations in shared-memory multiprocessor SoCs 15

Figure 4-7. Generic cache architecture.

Figure 4-7 shows a generic k-way set-associative cache architecture. The
address of a load or store operation is first translated into a set index that
uniquely identifies the set where the data is cached (if it is cached at all).
Within each set there are k blocks. An associative search, tag matching, is
required to determine which block, if any, contains the data corresponding to
the specified address. If the addressed block is not found, one of the k blocks
in the set is victimized: dirty data is copied from the victim block to memory,
while the requested data is copied from memory to the victim block.

Figure 4-8. L2 cache addressing.

Figure 4-8 depicts how a cache block is addressed. Tag matching is used
to locate the place within the set where the data is placed. Since tag matching
is performed on the most significant bits, the data of e.g. one MPEG frame is
distributed over all sets. Thus, a linear memory access pattern results in a
uniform distribution of accesses over the cache.

A known issue with hardware-managed caches is the interference
between multiple independent software tasks that share the same cache.
Various approaches in the literature address this problem. See, for example
(Liedtke, Haertig, & Hohmuth 1997;Molnos, Heijligers, Cotofana, & van
Eijndhoven 2005;Ravi 2004).

In the SoC depicted in Figure 4-2, there are two types of caches: L1 and
L2. The L1 cache is shared when the corresponding CPU supports

16 Chapter 4

multitasking. Upon a task context switch, new task data is loaded into the
cache, evicting the exiting-task data out from the cache. When the evicted
task is executed once again, its data has to be reloaded, causing an extra
performance penalty compared to the case when the task runs without
interruption. However, in a multiprocessor system, the CPUs are typically
dedicated to a small number of tasks: for example, one CPU takes care of
coprocessor management, another takes care of network traffic, etc. As a
result, the remaining CPUs can concentrate on running applications without
being interrupted by housekeeping jobs. Consequently, L1 cache
interference appears to be a less urgent problem in a multiprocessor than it is
in a single CPU system.

For the L2 cache, a different story applies. This single cache is shared
concurrently by the tasks in the system. For example, a Linux operating
system executing on one or more CPUs may suddenly require a lot of
memory when it starts an Internet browser with Java support. We want to
avoid that this action in the Linux domain evicts critical data and code
sections in another domain, for example a real-time video codec running on
the DSPs sharing the same L2 cache. We define a domain as the collection of
tasks that share a determined cache space.

In this section, we focus on a cache management mechanism for the L2
cache. The following sections describe our approach to cache management
to bound interference among the various application domains that execute
concurrently on the multiprocessor.

Resource users

The users of the cache are the cache domains or collection of software
tasks. The software tasks request from the cache load (read) and store (write)
operations. This operation can result either on a hit (the requested data is
cached) or a miss (the requested data is not in cache). Upon a cache miss,
data has to be brought from main memory victimizing cached data.

Budget definition

Available cache partitioning methods (Liedtke, Haertig, & Hohmuth
1997;Molnos, Heijligers, Cotofana, & van Eijndhoven 2005) allocate parts
of the available cache sets exclusively to a subset of the executing tasks
(Figure 4-9). The disadvantage of this approach is that it affects the memory
model as seen by the software programmer. For example, if task A writes to
memory location X, the data is cached in partition A. If task B reads from
memory location X at a later moment in time, it cannot find the data in cache

4. Resource reservations in shared-memory multiprocessor SoCs 17

partition B and consequently the stale data is loaded from memory into
partition B. This is probably not what the programmer expected.

Figure 4-9. Traditional cache partitioning.

In contrast to set partitioning, we chose to partition the cache by limiting
the number of ways a task can claim within each set in the cache. Figure 4-
10 depicts the resulting cache organization. Cache resource management is
performed by allocating cache space to a domain. During cache lookup, all
ways in the set are considered, including the ways associated with domains
other than the one performing the lookup, i.e., any task can read or write any
cache block with no restrictions. Consequently, the shared memory model
remains intact. The programmer does not notice any functional difference
between a traditional and a resource-managed cache.

Figure 4-10. Cache way partitioning.

A cache budget determines the maximum number of ways the domain
can claim, say N. If each way corresponds to a fixed number of bytes, say M,
each budget corresponds to N*M bytes. The cache contains a bit vector for

18 Chapter 4

every domain, where each way in the cache is associated with one bit in
these vectors. By setting the bit vector in the cache, the system integrator can
choose explicitly which domains share which cache ways.

The task descriptor in the OS contains a field that identifies the domain
the task belongs to. On every context switch, the OS copies this field to a
hardware register. On a cache miss, the cache controller inspects this register
to determine which domain is causing the miss and the victim is selected
from the ways belonging to this domain.

There are two types of reservations. Cache reservations can overlap
(domains can share ways) or be disjoint (no ways are shared). When two
domains share a way, in the worst case, one of these domains can evict all
data of the other domain from the cache. If all domains reserve disjoint
ways, the reservation is not shared: tasks belonging to domain A cannot evict
data from domain B. Overlapping domains are useful when the worst case
cache requirement is far from the average. Each domain reserves disjoint
space to be used during normal behavior and overlapping ways for the worst
case.

Replacement algorithm

The replacement algorithm, that selects which cache block is victimized,
is the equivalent of the scheduling algorithm for the CPU. The cache
employs a random replacement strategy. When a task belonging to domain
causes a refill, a victim block is selected from the corresponding domain,
such that the number of ways associated with the domain in the set does not
exceed the predetermined budget for the domain. The replacement algorithm
only applies during a cache refill, following a cache miss.

Accounting

Accounting has to keep track of the number of ways allocated to a
particular domain in a particular set of the cache.

Enforcement

If a bit is set in the vector of a selected domain, the domain can access
the cache blocks in the way corresponding to the bit position in the vector.

Admission control

The admission control for a cache reservation request is simple. The total
amount of requested space should not exceed the total cache size.

4. Resource reservations in shared-memory multiprocessor SoCs 19

6.3 Memory access cycles

As presented in Section 3, data transfer to and from memory is becoming
the main system bottleneck. As an example, Figure 4-11. depicts the
structure of the memory path of the SoC. The memory controller has three
available ports. Two of these ports are used by the refill and victim engines
of the L2 cache. The third port is used by the hardware accelerators.

Figure 4-11. Memory controller ports.

This section focuses on the memory access cycles: the cycles available
for data transfer from the memory controller ports to the off-chip memory.
Similar to processing cycles, memory access cycles constitute a volatile
resource: a memory access cycle that is not granted to a requester is lost
forever. However, the allocation granularity for memory access cycles is a
few orders of magnitude smaller than the allocation granularity for CPU
cycles.

The order in which requests are presented to the memory has a large
impact on the efficiency of the memory access. For example, if a write
transfer follows a read transfer, the transition overhead, which consists of the
cycles needed to invert the direction of the data channel, is similar to the cost
of the transfers. It is very difficult, if not impossible, to guarantee net
transfer cycles (excluding overhead cycles). Instead, gross transfer cycles
(including overhead cycles) rather than net transfer cycles are guaranteed,
and overhead cycles are attributed to the request that causes the overhead.

The reservation scheme for memory access cycles assumes a mix of low-
latency traffic and high-bandwidth traffic and tries to minimize the average
latency for the low-latency traffic while meeting the bandwidth requirements
for the high-bandwidth traffic. Typically, cache engines generate low-
latency traffic, whereas hardware accelerators generate high-bandwidth
traffic.

20 Chapter 4

Resource users

On behalf of the tasks they execute, hardware blocks and cache engines
issue memory requests that consume memory access bandwidth. The arrival
and servicing of memory requests is described by two functions of the
number of memory-clock cycles (t): the request function R and the supply
function S. Both functions are taken from (Feng & Mok 2002), and are
depicted in Figure 4-12.

Figure 4-12. Request and supply functions.

The request function R(t) represents the total number of cycles requested
in the interval (0, t), whereas the supply function S(t) represents the total
number of cycles supplied in the interval (0, t). R(t) is a simple staircase
function, for which every step represents the arrival of one or more multi-
cycle requests. If the requests arriving at tR have total gross size s(s ≥0), then

lim ()
5W W

R t
↓

= R(tR) + s. (1)

In the S(t) function, supply intervals alternate with still intervals. Cycles
are supplied in the supply intervals only:

S(t + ∆t) = S(t) + ∆t, when (t, t + ∆t) is a supply interval; (2)

S(t + ∆t) = S(t), when (t, t + ∆t) is a still interval. (3)

The number of supplied cycles can never be larger than the number of
requested cycles. A request is characterized by size s, arrival time tR , start
time tS

 , completion time tC, and latency λ. From tR to tS , the request is
pending; from tS to tC, the request is being serviced. (tS, tC) is the service
interval for the request.

4. Resource reservations in shared-memory multiprocessor SoCs 21

S(t) ≤ R(t). (4)

tS = max{t | S(t) = R(tR)}. (5)

tC = min{t | S(t) = R(tR) + s}. (6)

λ = tC − tR. (7)

Different requesters will be identified by an index to the request and
supply functions. For requester i, the request and supply functions are
denoted Ri(t) and Si(t). Since every cycle can be supplied at most once,
different requesters have disjoint supply intervals:

 Si(t + ∆t) = Si(t) + ∆t ⇒ Si(t + ∆t) = Sj(t) ∀ j ≠ i. (8)

Typically, there are two different types of hardware blocks, with different
request characteristics and different service requirements. High-bandwidth
requests, typically issued by hardware accelerators, tend to have a regular
request pattern, and require effective use of memory bandwidth. In media
systems, these requests represent the bulk of the traffic. High-bandwidth
traffic generally has latency requirements that are individually, but not
tightly, bounded. Low-latency requests have an irregular request pattern with
potentially large bursts, and require low average latencies. Individual request
do not have bounded latency requirements. Low-latency bursts can be
accommodated because of the relatively large latency bounds of the regular
traffic.

The descriptions in this section are restricted to a single low-latency
requester (LL) and a single high bandwidth requester (HB). This
simplification helps to focus on the quintessence of the reservation
mechanism. In this area, research is still in progress and details are not yet
available for publication.

Budget definition

The budget definition for the low-latency budget is given in two steps. In
the first step, we make a simplifying assumption: the budget boundaries are
assumed to be hard, i.e., out-of-budget cycles are not supplied, even if no
other requester is contending for them. With this assumption, the reservation
mechanism is non-bandwidth preserving (idle memory cycles while requests
are pending), but easy to explain. In the second step, this assumption is
dropped.

22 Chapter 4

The low-latency budget (LL) can be compared to a credit card, where the
customer borrows from the bank, and pays back later. LL goes through a
sequence of active and inactive intervals. During an active interval, LL is
either borrowing or paying its debt.

By definition, an active interval starts at t = 0. During each active
interval, the low-latency budget is defined by two functions UBLL(t) and
LBLL(t), the upper and lower bound, respectively. In the first step we assume
that these functions bound the supply function SLL(t) directly:

LBLL(t) ≤ SLL(t) ≤ UBLL(t) (9)

Figure 4-13 depicts one active interval of a low-latency budget. The gray
band represents the bounds that the budget imposes on SLL(t). At this point in
time, LL is requesting, and SLL(t) starts its first supply interval after the
arrival of the pending request(s). At t = 0, SLL(t) starts its first supply
interval, and LL becomes active. At t = a, the upper bound is hit, no more
credit is available, and the requester starts paying back. At t = b, there is
sufficient credit again to resume supplying. At t = c, there are no more
requests pending, and the requester starts paying back again. At t = d, a new
burst of requests arrives. At t = e, supplying resumes. Finally, at t = e, the
complete debt has been paid back. If there is no request pending and there is
no remaining debt, the requester becomes inactive.

Figure 4-13. Low latency contract.

The lower bound corresponds to a function ρt, where ρ is a fraction of
the available cycles, with 0< ρ << 1. The vertical distance between the two
bounds, σ, determines the burst size accommodated by the budget. The σ
and ρ parameters are taken from the sigma/rho (σ/ρ) abstraction, used for

4. Resource reservations in shared-memory multiprocessor SoCs 23

traffic characterization in network calculus (Cruz 1991). With these
parameters, the low-latency budget is given by

UBLL(t) = ρt + σ, (10)

LBLL(t) = ρt. (11)

This completes the first step, in which we assumed that upper bound is
hard. This hard upper bound implies that out-of-budget supply is not
allowed, even when HB is not requesting. This is a waste of bandwidth, and
has a negative impact on the average LL latency as well.

When the upper bound is not hard, equation (9) does not necessarily hold.
To define soft bounds, some additional terminology is needed. The functions
IBS(t), intra-budget supply, and XBS(t, ∆t), extra-budget supply, are defined
by the following equations:

S(t+∆t) = S(t)+∆t
⇒ IBS(t+∆t) = min(IBS(t)+∆t, UB(t+∆t)), (12)

S(t+∆t) = S(t)
⇒ IBS(t+∆t) = max(IBS(t), LB(t+∆t)), (13)

IBS(t’) = UB(t’) ∀t’∈(t, t+∆t)
⇒ XBS(t, t+∆t) = (S(t+∆t) – S(t)) – (UB(t+∆t) – UB(t)), (14)

IBS(t’) < UB(t’) ∀t’∈(t, t+∆t)
⇒ XBS(t, t+∆t) = 0, (15)

IBSLL(t) can take values between 0 and σLL. XBSLL(tS, tC) > 0, extra-budget
supply for an LL request with service interval (tS, tC), is allowed only if HB is
not requesting at tS.

Arbitration algorithm

The arbitration algorithm decides on how to allocate the cycles. It is priority-
based, and uses three priorities, two for LL (default and limit), and one for
HB. The LL default priority is higher than the HB priority; the LL limit
priority is lower than the HB priority. In the CPU domain, this dual priority
scheme is known from bandwidth-limiting servers(Burns & Wellings 1993).
In the following subsections it becomes clear when these priorities apply.

Arbitration is non-preemptive. Ongoing transfers are completed, even
when a higher-priority request arrives. This has to be the case, because

24 Chapter 4

preemption is detrimental to the efficiency of the memory (causes many
overhead cycles). In the discussion of the enforcement mechanism, the
consequences of the choice are addressed in more detail.

The description of the implementation corresponds to a very elegant
solution, conceived by Hans van Antwerpen at Philips Semiconductors, used
in the arbiter of a double data rate (DDR) memory controller (de Oliveira &
van Antwerpen 2003).

Accounting

The accounting mechanism is depicted in Figure 4.12. It uses a saturating
counter ACCOUNT, which saturates at 0 and CLIP. ACCOUNT is initially
0, and is increased or decreased every cycle. ACCOUNT keeps track of
IBSLL(t). It is updated every cycle. If the cycle is allocated to the requester,
ACCOUNT is increased with DEN − NUM, otherwise it is decreased with
NUM. NUM stands for Numerator, and DEN stands for Denominator.

NUM/DEN = ρLL. (16)

CLIP/NUM = σLL/(1−ρLL). (17)

ACCOUNT/NUM = IBSLL(t). (18)

In the budget definition, NUM, DEN and CLIP replace the original ρ and
σ. One of these values can be freely chosen, the others then follow from (16)
and (17). Choosing a round value for NUM, which is somewhat counter
intuitive, the CLIP value becomes more intuitive.

4. Resource reservations in shared-memory multiprocessor SoCs 25

Figure 4-14. Priorities, accounting, and enforcement.

Enforcement

Enforcement makes sure that the LL priorities are switched at the
appropriate times. The decision to raise or lower the LL priority is based on
comparing ACCOUNT with a threshold LIMIT. If ACCOUNT < LIMIT,
then LL has default priority; otherwise, LL has limit priority. If max(sLL) is
the maximum gross LL request size, then

LIMIT = CLIP − max(sLL)*NUM. (19)

The threshold value LIMIT must be such that the boundary constraint of

the LL budget is satisfied. Extra-budget supply, XBSLL(tS, tC) > 0, requires
that IBSLL(tS) > σLL − s, where s is the size of the request. Because of (16)
through (19), this implies ACCOUNT > LIMIT at tS, which in turn implies
that LL has limit priority at tS. If LL has limit priority, the request can only be
serviced if HB is not requesting. Hence, extra-budget supply is only possible
if HB is not requesting, which was the desired effect.

For implementation simplicity, LIMIT is currently implemented as a
programmable parameter. In order to minimize the number of stall cycles,
the DDR controller has a small queue of LL requests after arbitration. Hence,
in a real implementation, LIMIT/NUM has to be larger than max(sLL),
depending on the size of this queue.

26 Chapter 4

Admission control

By definition, admission control decides if a certain combination of contracts
is feasible. Since there is only one contract, there is no admission control.

7. CONCLUSION

A major source of robustness problems in current generation systems is
the unpredictable behavior caused by interference among concurrently
executing applications that compete for access to shared system resources—
such as processor cycles, cache space, and memory access cycles.
Traditionally, these aversive effects of interference could be kept under
control by deploying a real-time OS in combination with a sufficient degree
of over provisioning.

For today's systems, this approach is no longer viable. The price erosion
in the consumer electronics market forces chip vendors to integrate more and
more functionality in an SoC, at the expense of system robustness. For
instance, while previous generation SoCs separated real-time audio/video
hardware from general-purpose hardware to handle user events, today's
multiprocessor SoCs deploy generic processor and interconnect hardware
that handle both.

This chapter outlines an approach to bound interference among
independently developed subsystems. The system provides each subsystem
with an execution environment—called a virtual platform—that emulates the
environment in which the subsystem was developed and tested. A subsystem
reserves a share of each required system resource. This set of reservations
defines the virtual platform. All shared resources in the virtual platform must
provide guaranteed reservations to subsystems, or deny a reservation request
when the request exceeds the available capacity. The research challenge
towards such compositional systems is threefold.
• Define hooks in hardware and software with associated strategies to

provide and guarantee reservations for every shared system resource.
• Provide an overall resource management strategy that integrates the

individual reservation strategies of each shared resource.
• Define an approach to characterize subsystems in terms of execution

requirements that can be translated into the desired resource reservations.

This chapter takes on the first challenge and presents reservation

mechanisms for the key resources in a multiprocessor SoC: processor cycles
of a CPU, cache space in an L2 cache that is shared among multiple
processors, and memory cycles arbitrated by a DDR memory controller. The

4. Resource reservations in shared-memory multiprocessor SoCs 27

described DDR controller is currently deployed in Philips Nexperia
solutions, while the processor reservations are proposed for integration in
embedded operating systems, such as CE Linux. The presented cache space
reservations are targeted for inclusion in the next generation Philips
Nexperia SoCs.

8. ACKNOWLEDGEMENT

The authors want to express their gratitude to Peter van der Stok, and
Kees Goosens for their review comments.

REFERENCES

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., &
Warfield, A. 2003, "Xen and the art of virtualization", Proceedings of the nineteenth ACM
symposium on Operating systems principles pp. 164-177.

Baruah, S. & Lipari, G. "A multiprocessor implementation of the total bandwidth server", in
Proceedings 18th International Parallel and Distributed Processing Symposium, pp. 40-
49.

Burns, A. & Wellings, A. J. 1993, "Dual-priority Assignment: A practical method for
increasing processor utilization", in Proceedings of 5th Euromicro Workshop on Real-
Time Systems, Oulu, Finland, pp. 48-55.

Cruz, R. L. 1991, "A Calculus for network delay, part I: network elements in isolation", IEEE
Transactions an Information Theory, vol. 37, no. 1, pp. 114-131.

Cumming, P. 2003, "The TI OMAP™ Platform Approach to SoC," in Winning the SoC
Revolution, G. Martin & H. Chang, eds., Kluwer Academic, pp. 97-118.

de Oliveira, J. A. & van Antwerpen, H. 2003, "The Philips Nexperia™ Digital Video
Platform," in Winning the SoC Revolution, G. Martin & H. Chang, eds., Kluwer
Academic, pp. 67-96.

Eide, E., Stack, T., Regehr, J., & Lepreau, J. 2004, "Dynamic CPU management for real-time,
middleware-based systems", in Proceedings 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS) , pp. 286-295.

Feng, X. & Mok, A. 2002, "A Model of Hierarchical Real-Time Virtual Resources", in
Proceedings IEEE Real Time System Symposium, Austin, USA, pp. 26-35.

Goossens, K. & González Pestana, S. 2004, "Communication-Centric Design for Real-Time
Consumer-Electronics Systems on Chip," in Dynamic and robust streaming between
connected CE-devices, P. van der Stok, ed..

Joseph, M. & Pandya, P. 1986, "Finding response times in a real-time system", British
Computer Society Computer Journal, vol. 29, no. 5, pp. 390-395.

Klein, H. 1993, A Practitioner's Handbook for Real-Time Analysis Kluwer Academic
Publishers.

Liedtke, J., Haertig, H., & Hohmuth, M. 1997, "OS-Controlled Cache Predictability for Real-
Time Systems", in Proceedings of the 3rd IEEE Real-Time Technology and Applications
Symposium (RTAS), IEEE Computer Society, pp. 213-227.

28 Chapter 4

Lipari, G. & Bini, E. 2003, "Resource partitioning among real-time applications", in

Proceedings 15th Euromicro Conference on Real-Time Systems , pp. 151-158.
Liu, C. & Layland, J. 1973, "Scheduling algorithms for multiprogramming in a hard real-time

environment", Journal of the ACM, vol. 20, no. 1, pp. 46-61.
Molnos, A., Heijligers, M. J. M., Cotofana, S. D., & van Eijndhoven, J. 2005, "Compositional

memory systems for multimedia communicating tasks", in Proceedings of Design
Automation and Test in Europe (DATE), Munich, Germany.

Nolte, T. & Kwei-Jay, L. 2002, "Distributed real-time system design using CBS-based end-to-
end scheduling", in Proceedings. Ninth International Conference on Parallel and
Distributed Systems, pp. 355-360.

Oikawa, S. & Rajkumar, R. 1998, "Linux/RK: A Portable Resource Kernel in Linux", in
Proceedings IEEE Real-Time Systems Symposium Work-In-Progress.

Otero Pérez, C. M., Steffens, E., Loo, G. v., Stok, P. v. d., Bril, R., Alonso, A., Garcia Valls,
M., & Ruiz, J. 2003, "QoS-based resource management for ambient intelligence," in
Ambient Intelligence: Impact on Embedded System Design, T. Basten, M. Geilen, & H. de
Groot, eds., Kluwer Academic Publishers, pp. 159-182.

Paulin, P., Pilkington, C., & Bensoudane, E. 2002, "StepNP: A System-Level Exploration
Platform for Network Processors", IEEE Design & Test of Computers, vol. 19, no. 6, pp.
17-26.

Rajkumar, R., Juwa, K., Molano, A., & Oikawa, S. 2001, "Resource kernels: A resource-
centric approach to real-time and multimedia system," in Readings in multimedia
computing and networking, Morgan Kaufmann Publishers Inc., pp. 476-490.

Ravi, I. 2004, "CQoS: a framework for enabling QoS in shared caches of CMP platforms", in
Proceedings of the 18th annual international conference on Supercomputing, ACM Press,
pp. 257-266.

Seawright, L. & MacKinnon, R. 1979, "VM/370 -- a study of multiplicity and usefulness",
IBM Systems Journal, vol. 18, no. 1, pp. 4-17.

Stravers, P. & Hoogerbrugge, J. 2001, "Homogeneous multiprocessing and the future of
silicon design paradigms", Proceedings of the International Symposium on VLSI
Technology, Systems, and Applications(VLSI-TSA).

van Eijndhoven, J., Hoogerbrugge, J., Nageswaran, J., Stravers, P., & Terechko, A. 2005,
"Cache-Coherent Heterogeneous Multiprocessing as Basis for Streaming Applications," in
Dynamic and robust streaming between connected consumer electronic devices, P. van der
Stok, ed..

	INTRODUCTION
	RELATED WORK
	MULTIPROCESSOR SYSTEM
	INTERFERENCE AMONG SUBSYSTEMS
	VIRTUAL PLATFORM
	RESOURCE RESERVATION MECHANISMS
	Processing cycles
	Resource users
	Budget definition
	Scheduling algorithms
	Accounting
	Enforcement
	Admission control

	Cache space
	Resource users
	Budget definition
	Replacement algorithm
	Accounting
	Enforcement
	Admission control

	Memory access cycles
	Resource users
	Budget definition
	Arbitration algorithm
	Accounting
	Enforcement
	Admission control

	CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

