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Abstract

We present a new VLIW core as a successor to the TriMedia
TM1000. The processor is targeted for embedded use in
media-processing devices like DTVs and set-top boxes.
Intended as a core, its design must be supplemented with
on-chip co-processors to obtain a cost-effective system.
Good performance is obtained through a uniform 64-bit 5
issue-slot VLIW design, supporting subword parallelism
with an extensive instruction set optimized with respect to
media-processing. Multi-slot ‘super-ops’ allow powerful
multi-argument and multi-result operations. As an example,
an IDCT algorithm shows a very low instruction count in
comparison with other processors. To achieve good perfor-
mance, critical sections in the application program source
code need to be rewritten with vector data types and func-
tion calls for media operations. Benchmarking with several
media applications was used to tune the instruction set and
study cache behavior. This resulted in a VLIW architecture
with wide data paths and relatively simple cpu control.

1. Introduction

Our goal was to develop a processor architecture for real-
time processing of multimedia data streams. The processor
is targeted to mass-produced consumer electronic devices,
such as digital televisions and set-top boxes, and as such
qualifies as an embedded processor. Software programma-
bility, in combination with respectable computing power,
allows a single device to be flexible in a number of ways.
This flexibility ensures that the device can be applied in a
range of different products (including regional differences)
and can adapt to quickly evolving standards in the digital
media domain. The silicon cost of high-performance pro-
grammability should furthermore be partially compensated
by time multiplexing of functionality, where the product
performs different functions at different times.

Although the processing power will allow significan
processing of real-time video streams, the processor c
itself is intended to be integrated on-chip with a set of c
processors which can perform other tasks in parallel. T
co-processors will handle tasks with stringent real-tim
requirements for instance for off-chip communication, an
or tasks with high-throughput but regular computation
which are efficiently performed in dedicated hardwar
Examples of such co-processors are a ‘firewire’ (139
DMA unit and an image horizontal/vertical rescale uni
The co-processors communicate with each other and w
the processor core through an on-chip bus, and share ac
to a single off-chip memory. For different products, the pro
cessor core can be combined with different sets of such
chip co-processors, thus obtaining more flexibility as we
as a good performance/silicon-area ratio, which
extremely important for the targeted mass-produced co
sumer electronic devices. Figure 1 shows the TM1000 as
example. This paper will focus on the VLIW processor co
only.

The newly developed core can be regarded as a high
performance successor of the VLIW core as present ins
the current Philips TriMedia TM1000 family of devices
This existing core has the following features [1]:
• a 5-issue VLIW architecture with a 32-bit word size;

• 27 functional units, offering a choice of operation type
in each slot in the instruction;

• any operation can be guarded to provide condition
execution without branching;

• instruction set and functional units optimized with
respect to media processing;

• a single multi-ported register file with bypass network
allowing 1-cycle latency operations;

• 32 kB, 8-way instruction cache;

• 16 kB, 8-way, quasi-dual ported, data cache;

• a variable-length (compressed) instruction set design
1
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This design was taken as a starting point and reference
for the new processor. Considerable freedom was however
allowed for modifications, with only limited requirements
for backward compatibility. A significantly higher process-
ing power was targeted to move more functionality to soft-
ware, and to handle higher-resolution images in real-time
video streams.

2. Related processors

Several other companies have products or developments
in the field of embedded media processors. A good over-
view of techniques for media processing was presented by
Faraboschi, Desoli, and Fischer [2].

A relatively new entry is by Equator Technologies,
which, in co-operation with Hitachi, announced its
MAP1000 processor in December 1998 [3]. This machine
has a 4-way VLIW processor with an instruction set opti-
mized for media processing, also supporting subword par-
allelism in an overall 64-bit design. On-chip co-processors
are used for other tasks such as media stream I/O. The
resulting performance levels are suitable for HDTV audio/
video processing.

In digital signal processing, Texas Instruments clearly
has a strong foothold. The TMS320C6x processors can
achieve video-speed processing [4]. They have an 8-slot
VLIW design executing RISC-like operations that fits well
with compiler technology. As in the TriMedia, all opera-
tions can be guarded.

NEC developed a 2-way superscalar processor for
embedded multimedia use, the V830R/AV. It has one 32-

bit pipeline for integer operations, and one 64-bit pipelin
for media operations supporting subword parallelism a
3-argument operations [5].

Interestingly, these three processors all operate on a
partitioned register file. This contrasts with the single glo
bal register file of the TriMedia processors.

Most general-purpose processors have extensions
their instruction set for media processing. Many of them d
not target the embedded market, as their price and pow
settings are not suitable for mass-produced consumer e
tronic devices. However, the PowerPC with Altivec exten
sion surely deserves mention here [6]. The PowerPC i
superscalar design, with an additional new execution pip
line with a dedicated register file for media processing, ha
ing a 128-bit wide datapath supporting 3-argume
operations. The Altivec instruction set features an extens
choice of media operations, showing similarities with ou
TriMedia CPU64 instruction set.

3. Architecture

The goal for the new processor core was to achie
roughly 6 times the throughput of the first TM1000 opera
ing at 100MHz by means of architectural changes and
utilizing new process technologies, while not increasing t
transistor count beyond a factor of 2. A new process tec
nology was estimated to allow almost a three fold increa
in on-chip cpu clock frequency.

To achieve architectural speed-up, one could consid
raising the number of issue-slots in the VLIW architectur
This track was however not followed for the following rea
sons:
• exploitation of more parallel slots through compile

detection of ILP becomes increasingly difficult;

• a single multi-ported register file and bypass network
convenient from a programming/compilation point o
view, but becomes increasingly difficult to implement i
terms of area and speed in the case of a larger num
of ports.

The architectural speedup was achieved by differe
means:
• the wordsize was increased overall from 32 to 64 bi

to achieve more data throughput by exploiting SIMD
style (subword) parallelism;

• the instruction set was extended with a large set
media operations, to allow mapping of critical loops i
relatively few operations;

• the data cache was improved to maintain a balanc
design, since the cpu throughput increases significan
more than the external memory bandwidth.

Figure 1. TM1000 overview diagram
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Besides higher throughput, the new processor will have
a memory management unit, providing virtual memory
translation and inter-task memory protection.

Backward compatibility with the TM1000 (32-bit) fam-
ily is achieved by recompiling the software. Care was taken
to ensure that all media operations in such code are mapped
with bit-wise identical behavior into the new (64-bit)
instruction set.

A few architectural highlights will be treated in more
detail in the next sections.

3.1. VLIW + SIMD

The TriMedia CPU64 architecture is a 5-slot VLIW
machine, in principle launching a long instruction every
clock cycle. It has a uniform 64-bit wordsize through all
functional units, the register file, load/store units, on-chip
highway and external memory. The 5 operations in a single
instruction can in principle each read 2 register arguments
and write one register result every clock cycle. In addition,
each operation can be guarded with an optional (4th) regis-
ter for conditional execution without branch penalty.

All functional units provide vector-style subword paral-
lelism on byte, half-word, or word entities. This SIMD-
style operation in each of the 5 slots in parallel allows for a
very high media processing throughput. There is almost no
support for arithmetic on 64-bit integers, 64-bit (double
precision) floating point numbers, or 64-bit address ranges,
since this was not considered important for the intended
application area.

With the exception of floating point divide and square
root, all functional units are pipelined, allowing a restart
every cycle. The latencies vary from 1 (for operations like
add, compare, bitand, bitshift, byteshuffle) to 4 (word mul-
tiply with round). A register-file bypass allows an operation
result to be used as an argument for a next operation with-
out having to wait for registerfile storage and retrieval. The
overall cpu architecture is depicted in Figure 2.

3.2. Branch control

The C compiler generates assembly code which before
scheduling consists of trees of basic blocks [7]. Every tree
has a single entry point, forks for modeling ‘if-then-else’
constructs, and a jump operation for terminating each tree
leaf. The instruction scheduler performs speculation by
moving operations up in the tree. The scheduler can apply
guarding on any operation with side effects, and/or generate
additional intra-tree jumps.

To efficiently handle many jump operations in a single
tree (and to reduce slot assignment constraints), there are 3
slots with branch units to allow scheduling of 3 conditional

jump operations in a single instruction. In such cases t
compiler must take care to ensure that at most one jump
actually be taken in any cycle. A jump operation has
branch delay cycles. The branch units are also pipelin
allowing a jump to be taken every cycle.

There is no provision for dynamic branch prediction.
compile-profile-compile cycle allows the C compiler an
instruction scheduler to optimize the scheduling of th
jumps and fill the branch-delay slots. These design choic
result in a cpu execution control that is relatively simple
comparison with state-of-the-art superscalar processors

Interrupt requests normally remain pending until a
interruptible jump is taken. In that case, the original bran
target address is saved, and a new target address is sele
from a set of interrupt vectors. At these moments the nu
ber of alive register values is limited by the compile
allowing a more efficient interrupt servicing.

Instruction compression is used to maintain reasona
code sizes despite having 5 issue slots with potentially
registers per slot, leading to instructions of variable size.
the cpu pipeline, one fetch stage is used for instructi
decompression, accounting for one of the three bran
delay cycles.

3.3. Instruction set

A large set of operations is implemented to suppo
SIMD-style processing on smaller entities inside a 64-b
word. These operations are normally selected by the ap
cation programmer at the C language level by correspon
ing function calls, or in C++ by appropriate operato
overloading. The instruction set covers most combinatio
of the following options:
• treating a 64-bit word as a vector of 8-, 16-, or 32-b

elements;

• providing two’s complement C-style wrap-around arith
metic or clipping against maximum and minimum inte
ger values on the result;

• interpreting the data as signed or unsigned values, m
ing a difference for operations that clip their results, an
for operations which perform accurate rounding of lea
significant bits that would otherwise be lost;

• providing a complete set of operations, such as:
add, subtract, min, max, abs, equal, greater, shift, mu
ply, type conversion, element shuffles, loads and stor

There are moreover various operations specially gea
to the signal-processing domain:
• multiplication operations which return only the mos

significant half of the multiply result;

• multiply-and-sum to perform an element-wise multiply
and summing together all products, to return a sing
integer with the ‘inner product’ value in full precision;
3
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• sum-of-absolute-differences, determining the absolute
values of element-wise differences, and summing them
together for a single unsigned integer result;

• special vector shuffle operations for transpose opera-
tions on matrices (images), to support 2-dimensional fil-
tering;

• look-up-table operations, where a single vector pro-
vides in parallel 4 short unsigned integers as indices to a
table, and 4 new values are read from the table to con-
stitute the resulting vector. This facility is extremely
useful for many purposes such as color space conver-
sion, intensity correction, etc.

Load/store operations are also provided in a wide vari-
ety. The semantics of a 64-bit load (or store) differs for the
different vector element sizes (byte, half-word, word)
because the cpu supports bi-endian operation: the vector
support is designed to match C-style arrays, where increas-
ing indices map to increasing memory addresses. As result,
the order of the vector elements in memory is fixed,
although the byte order within a (half-word or word) ele-
ment depends upon the endian setting. Vector stores are
also provided in a ‘masked’ form, providing write-enable
bits for each vector element. In addition to the vector load/
stores, single element (scalar) load/stores are provided.
Such loads differ for signed versus unsigned loads due to
sign extension. Table 1 presents an overview of the number
of operations implemented in different categories.

We found that by rewriting some critical inner loops of
the tested applications, we could implement their function-
ality in about half the number of operations used with opti-
mized TM1000 source code. Section 5 presents the results
of an implementation of an ‘IDCT’ algorithm, showing the
strength of the instruction set in comparison with other pro-
cessors.

3.4. Multi-slot operations

To allow more powerful media operations, more than
arguments and/or more than one result are desirable. Th
why multi-slot operations (‘super-ops’) are incorporate
They occupy 2 neighboring slots in the instruction forma
and map to a double-width functional unit in the archite
ture. This way the ‘super-op’ neatly fits in the existing
instruction format, fits the existing connectivity structure t
the register file, and hence requires very little hardwa
overhead. Examples of such operations are:
• a ‘transpose’ operation, requiring 4 argument vecto

and producing 2 result vectors, to perform (an upper
lower half of) a matrix transposition;

• an ‘average’ operation of 4 argument vectors to obta
an accurate average value of the arguments, preven
the rounding errors in intermediate results obtaine
with a sequence of 2-way average operations.

Figure 2 shows the resulting datapath architecture. T
instances of functional units which can accommodate tw
slot super-ops are shown among a larger set of normal s
gle-slot functional units. (The constellation of functiona
units in the figure is given only as an example; the numb
of units in the real design will be different.)

3.5. Cache and MMU design

The new data cache maintains the 16KB size of t
TM1000, the 64B cache blocks in an 8-way set associat
scheme, and a fetch-on-write and read critical-word-fir
policy. Simulations have indicated that doubling the cac
size hardly helps in reducing the miss rates in the selec
media processing applications. This is due mainly to the
streaming data nature, characterized by large data sets
little re-use. We obtained a better cache performance
using:
• a true dual-port cache design to fit the two load/sto

units in the VLIW data path.

Table 1. Instruction set overview

type of operation number

loads and stores 39

byte shuffles 67

bit shifts 48

multiplies 54

integer ALU ops 104

floating point ops 59

branch ops 10

table lookup ops 6

special register ops 23

Total 410

global register file, 128 words x 64 bit
15 read ports + 5 write ports

pipelined instruction decode & launchIcache

Dcache

m
m

u
m

m
u

m
m

u

highway
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Figure 2. Datapath architecture
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The TM1000 cache was a quasi-dual port design. Two
load/store requests could only be served in parallel if
they happened to access different banks. Otherwise, a
stall cycle was imposed on the entire VLIW datapath,
allowing serialization of the two requests. This penalty
is removed by true dual r/w ports;

• a (more powerful) set of operations to control cache
behavior: a ‘prefetch’ request to indicate the data to be
fetched from memory, a ‘victimize’ request to indicate
cache blocks which are no longer needed, and an ‘alloc’
request to suppress the normal fetch-on-write when an
entire block will be written.

New memory management units provide 32-bit virtual-
to-physical address translation and paged access protection.
The dual-ported d-mmu is truly separate from the single-
ported i-mmu. One design objective was to provide seam-
less co-existence with MIPS processors in the same system,
which influenced the mmu design choices. The resulting d-
mmu has:
• variable page sizes, in powers of 4, 4kB to 16MB;

• 64 entry fully associative TLB, software managed;

• page descriptors having i.a. an 8-bit task ID and a write-
enable bit.

In addition, the upper 3 bits of the 32-bit virtual address
choose different memory segments with supervisor mode
only, unmapped, or non-cached properties.

Supporting variable page sizes is deemed necessary for
obtaining good TLB hit rates, in particular when an appli-
cation program runs quickly through large chunks of data,
as is the case in video image processing. Simulations were
performed in an attempt to automatically generate large-
page table entries from the application ‘malloc( )’ requests
with good results. Figure 3 shows simulation results
obtained with a high-definition video processing applica-
tion. The vertical axis presents the tlb miss-rate in % of
load/store operations. TLB sizes are shown from 16 entries
to 128 entries. The adjacent columns show three page-size
architectures: variable page sizes of 4Kb and up with pow-
ers of 4, 4Kb uniform, and 16Kb uniform.

3.6. Precise exceptions

Software-managed TLBs require the capability of the
cpu to handle precise exceptions. Precise exceptions are
furthermore useful for real-time interrupt response behav-
ior, and for software debugging. Designing the exception
mechanism was a challenge due to the combination of:
• a pipelined VLIW design, with a potentially large num-

ber of simultaneously active functional units, each hav-
ing a different latency;

• the possibility of a caught exception being overridde
by another exception occurring later in time from a
earlier instruction in a later pipeline stage;

• having multiple jumps active in the pipeline, which
complicates the recovery at exception return;

• a supervisor/user mode protection mechanism, w
several such modes simultaneously active in the instru
tion pipeline, since such mode changes occur w
jumps.

The method implemented to handle this is still relative
straightforward: the pipeline is emptied by executing som
more clock ticks, while saving the last few program count
values with some extra status bits. On return from th
exception, they are restored into the pipeline through
sequence of jumps. Besides for TLB misses, precise exc
tions can be generated for opcode errors, privilege vio
tions, debugging or high-priority timer events.

4. Performance evaluation

A basic set of tools was built to evaluate different desig
options. An available C/C++ compiler was adapted to su
port 64-bit vector types, and a scheduler for the TM100
was adapted to handle new constraints and features of
CPU64. In addition, a linker, loader, assembler and disa
sembler were made. The resulting code can be executed
the newly developed simulator [8]. The simulator has rel
tively high-level, C language, functional models, hooke
into a cycle-based simulation kernel. This allows function
and cycle-correct simulations of the cpu with caches a
mmus, on-chip highway, and external memory. Finall
simulation runs allow to exercise the compile-profile-com
pile loop, needed for good compiler optimization.

As an example of the power of the combined approa
of VLIW, subword parallelism, and an extensive set o
operations, the IDCT computation is an interesting benc
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Figure 3. TLB miss rate simulation
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mark from the targeted application domain. The IDCT is
coded with the ‘Loeffler’ algorithm [9], using a function
call syntax to select specific media operations. The result-
ing C source code is compiled with the developed tool
chain and executed in the simulator. The result showed
compliancy with the IEEE numerical accuracy require-
ments. The IDCT code is compiled and scheduled into 56
VLIW instructions, including function call/return over-
head, loading the 8x8 coefficients, performing the 2-dimen-
sional IDCT, normalization of the end result, and storing
the 8x8 pixels back in memory. All computations are done
with 16-bit values, which proved sufficient for achieving
accuracy compliancy in our implementation.

Figure 4 compares our results with results reported by
others. For the Pentium-II with MMX(*) Intel reports a
value of 500 cycles for a compliant IDCT including addi-
tional arithmetic for quantization [10]. Since quantization is
a less complex calculation, we estimate this IDCT to be
between 300 and 400 cycles. Alternatively, a comparison
can be made with Intel’s reporting of 240 cycles with a
faster non-compliant algorithm for a Pentium-I with MMX
[11]. Note furthermore that the figures for (at least) TI and
Intel were obtained through assembly programming.

As far as the numbers listed in Figure 4 are concerned,
the TriMedia CPU64, the PentiumII, and the V830 refer to
an accuracy compliant implementation. Compliancy is not
claimed for the other results, so computationally cheaper
algorithms were probably used [12][13].

Figure 4 has been included for comparison of instruction
sets, and is not suited for performance comparisons. The
CPU64 is still in development, whereas the other proces-
sors are already in production. Moreover, clock frequency
differences are significant.

As a larger driver application, a program was used whi
performs video de-interlacing using a motion estimatio
and compensation approach. This program contains m
than 10,000 lines of C code, and also has a considera
amount of code which is scalar/sequential by nature. W
this program a speedup over the TM1000 was obtained o
factor of 7.8. Taking into account the tripled cpu clock fre
quency, the doubled data path width, and the relative
slower external memory, this performance gain shows
good overall efficiency.

5. Conclusion

A new processor architecture has been developed as s
cessor to the TriMedia TM1000. Initial goals of 6x perfor
mance gain were roughly met: well vectorized inner loop
show a significantly higher speedup, while the speedup
scalar/sequential C code approximately equals the targe
clock frequency increase, i.e., a factor of 3.

The power of VLIW parallelism in combination with
subword parallelism and an extensive instruction set ha
been demonstrated with an extremely compact IDCT fun
tion. The good performance on vectorizable inner loops
achieved by optimizing C source code, requiring the use
vector data types and function calls for media operation
Manual optimization of critical sections in the source cod
is accepted for embedded use in high-volume applicatio
which has led to excellent performance in media process
tasks on a processor with wide data paths and relativ
simple cpu control.
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