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MPSoC mapping: exploiting concurrency 
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Computation on general purpose CPUs 

 

CPUs are generic work horses 

From 1, to 2, to 4, to ... CPUs to grow 
performance 

Shared memory abstraction is costly 
in HW. (multi-level caches, snooping) 

This abstraction is needed for multi-
threaded software: applications and 
operating system. 

 

Area(ALU)/Area(CPU) is very low (1%?) 

AMD Fusion Llano 

NVidia Tegra3 
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Computational efficiency beyond CPU 

General-purpose CPUs are (traditionally) designed to handle 
code with complex control-flow 

DSPs emphasize efficient processing of regular compute 

But DSP and CPU architectures are evolving towards each other. 

 

How to significantly increase operations/sec/$ and operations/J ? 

 

Hand-off compute load to: 

Function-specific accelerators 
(H264 decode, LTE channel decode, GFX rendering, IP packet processing, ...) 

GP-GPU: general-purpose programmable graphics processor units 

FPGA accellerators: Field programmable gate arrays 

 

GP-GPU and FPGA allow new workloads on off-the-shelf silicon 
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MPSoC programmability?? 

Silicon technology: incomprehensible growth transistors/chip 

SoC architecture: complex systems, many homogeneous and 
heterogeneous processor cores, non-uniform memory 

 

Who is the poor programmer to put these devices into good use? 

 

Limited SW creation cost (re-use & portability) 

Efficient use of HW resources 

Clean SW design (free of bugs) 

Timely delivery 

. . . 

 

 



DATE MPSoC tutorial 6  |  March 12, 2012 

Presentation theme: concurrency & data 

Programmability of multi-processors: 

Concurrency: distribution of operations 

Memory mapping: distribution of data 
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Embedded system Application mapping 

Sequential reference application 

CPU-thread Accelerator-thread 

Insert thread-level parallellism 

thread1 thread2 thread3 thread7 thread6 thread5 thread4 

And more... 

Tough issues are not in OPERATIONS, but in DATA: 
  Parallelism is typically hindered by data dependencies 
  Data must be available in local/nearby memories 

Create 
function 

parallelism 

Create 
data 

parallelism 
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Presentation further Sections 1 ... 4 

Functional  pipeline 
partitioning 

Data parallel 
partitioning 

Software 
Application view 

Section 1 Section 2 

System 
implementation view 

Section 3 Section 4 
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Section 1: application functional pipelining 

Functional  pipeline 
partitioning 

Data parallel 
partitioning 

Software 
Application view 

Section 1 Section 2 

System 
implementation view 

Section 3 Section 4 
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Function pipelining: partitioning 

int A[N][M]; 

 

while (..) 

{ produce_img(); 

  consume_img(); 

} 

 

produce_img() 

{ for (i ...) 

   for (j ...) 

    A[i][j] = ... 

} 

 

consume_img() 

{ for (i ...) 

   for (j ...) 

     ... = A[i][j]; 

} 

Loop distribution: 
Thread1: while (..) 

   produce_img(); 

 

Thread2: while (..) 

   consume_img(); 

 

 

 

 

 

 

 

Synchronize thread progress: 

True dependency: consumer 
must wait for valid data 

Anti dependency: producer 
must wait with over-writing until 
after consumption 
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Function pipelining: synchronization 

int A[N][M]; 

 

while (..) 

{ produce_img(); 

  consume_img(); 

} 

 

produce_img() 

{ for (i ...) 

   for (j ...) 

    A[i][j] = ... 

} 

 

consume_img() 

{ for (i ...) 

   for (j ...) 

     ... = A[i][j]; 

} 

 

Thread1: while (..) 

   produce_img(); 

 

Thread2: while (..) 

   consume_img(); 

 

Channel ch; 

 

 

 

 

 

 

 

produce_img() 

{ for (i ...) 

   for (j ...) 

    write_int( ch, ...) 

} 

 

consume_img() 

{ for (i ...) 

   for (j ...) 

     ... = read_int(ch); 

} 
Channel access functions 

implement thread stall. 
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Pipeline dependency analysis 

Potential pipelining 
showed in colors, 

with resulting Fifo's 
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Function pipelining: Channel APIs 

Too many choices for channel-based communication: 

Standard Java util.concurrent queue classes 

Intel’s TBB (C++) queues 

Linux 'pipes' and 'sockets' 

OpenCL channels 

OpenMAX IL for streaming media processing 

MPI message-passing channels 

. . . 

 

Very different queue implementations: 

Inter-thread, inside process memory context 

Inter-process, inside shared-memory system 

Inter-system, through device interfaces 
 

NOTE: C++ STL queues are NOT thread-safe!   
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Section 2: data parallelism in applications 

Functional  pipeline 
partitioning 

Data parallel 
partitioning 

Software 
Application view 

Section 1 Section 2 

System 
implementation view 

Section 3 Section 4 
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Data parallelization: multi-core scalability 

int sum = 0; 

for (i=0; i<N; i++) { 

    int value = some_work(i); 

    sum += value; 

} 

 

 Distribute the workload over multiple cores. 
 Each core handles part of the loop index space. 

 

 int sum = 0; 

#pragma omp parallel for reduction (+:sum) 

for (i=0; i<N; i++) { 

    int value = some_work(i); 

    sum += value; 

} 

 

Workload scales nicely across multiple cores  

Easy to write down , but hard to grasp all consequences! 
 Highly dangerous, might cause extremely hard-to-track bugs!   

 

 



DATE MPSoC tutorial 16  |  March 12, 2012 

Application Analysis 
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Section 3: coprocessors and data channels 

Functional  pipeline 
partitioning 

Data parallel 
partitioning 

Software 
Application view 

Section 1 Section 2 

System 
implementation view 

Section 3 Section 4 
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GPU or FPGA next to CPU 

GP-GPU: 

High floating point 
performance (>1TFlops) 

Large off-chip memory 
bandwidth 

Needs thousands of 
concurrent threads (SPMD) 

Few inter-thread data 
dependencies and little 
data-dependent control 

High-end chips take huge 
power (>100W) 

 

FPGA: 

High integer performance 
(>1Tops) 

Application-specific off-chip 
data interfaces. 

Needs hundreds of 
concurrent instructions (ILP) 

Takes HW design expertise 
and effort. 

High-end chips are very 
expensive (>$1000) 
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CPU – FPGA combinations 

Xilinx 'Zync' contains dual ARM 

Or all kinds of boards to fit PC architecture 
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CPU – GPGPU combinations 

NVidia Tesla for 
high-end 
compute 

Imgtec 
PowerVR 

for mobile SoC 

AMD Fusion for 
Tablet, Desktop, ... 
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Application - Accelerator co-processing 

Conceptually nice picture, real implementation hurdles: 

Application I/O to hardware is shielded by any 'real' operating system 

Thread control (sleep/wakeup) interacts with Accelerator progress 

  

Functional pipelining,  some thread mapped to HW accelerator,  

channels for inter-thread data transport: 

Application 

CPU-thread 1 Accelerator CPU-thread 2 Channel Channel 
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Memory-mapped channel communication 

Buffered communication channel in software: 

Channel read/write blocks thread progress on empty/full fifo buffer. 

Implementation with 'semaphores' or 'monitors' causes the OS to sleep 
and wake-up the threads as needed. 

Channel data is fully cached for efficient CPU access, under HW 
cache-coherency control. 

When one of the 'threads' is actually a hardware accelerator: 

Memory paging, coherency, and consistency issues 

Interact with the OS thread scheduler for wake-up 

 

Thread 1 Thread 2 Channel 
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HW/SW communication stack 

Application SW 
virtual address space 

CPU-side 
stack 

Linux 

Multi-core CPU 
with MMU and caches 

PCI-e / AXI memory  bus 

PCIe / AXI  interface 

Lapack 
accelerator 

Crypto 
accelerator 

DDR 

Accelerator-side 
(FPGA) stack 

Snoop Control unit 

User-level driver 

Kernel driver 

DMA stream engine 
Fifo interfaces to accelerators 
Access to embedded srams 

Compute library 
eg lapack, crypto Channel 

Channel 
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Streaming DMA engine in FPGA 

Fifo ram acts as cache for larger fifo buffer in host memory, 
performs explicit cache control (write-back, invalidate) 

Creates interrupts to wakeup selected software threads on host OS 

Bus slave Bus master 

Transfer 
controller 

Fifo 
ram 

Page 
table 

Fifo 
ram 

Fifo 
ram 

PCIe bridge 

PCIe 
to host 

Interrupt 
controller 

FPGA local bus 
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Linux kernel driver 

Traditional driver: 

Provides open(), read(), write() to application SW. 

Disadvantage: read/write are expensive. 
Require transition to 'kernel mode' on each call. 

 

Up-to-date approach: 

Provide mmap(): application gets direct access to FPGA memory 
through pointer dereferencing. Typically uncached! 

 

Furthermore: 

Provide Interrupt-Service-Routine for accelerator stream-engine. 
Signals Linux kernel to wake-up appropriate application thread. 

 

Unfortunately, writing kernel-level device drivers is not popular among 
application SW developers nor among HW FPGA developers. 
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Streaming to GP-GPU accelerator 

OpenCL 'Streaming': 

CPU and GPU process concurrently: buffered command queues    

Data exchange through PCIe shared memory space 

Relying on DMA support in the GPU device driver 

Application programming gets considerably complicated 

 
 

 

“clEnqueueMapBuffer()... this is not 
an easy API call to use and comes 
with many constraints, such as page 
boundary and memory alignment” 
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Section 3 CPU <-> accelerator: final notes 

CPU initiated communication 

CPU load/stores directly into device internal address space 

Scalar load/stores in uncached device memory space: 
 High latency, low bandwidth  

Device setup and control traffic! 

 

Accelerator initiated communication (DMA) 

Burst-mode transfers initiated by accelerator, into DDR space 

CPU load/store operations into local cache 

Cache-coherent through CPU snooping support 

High bandwidth, streaming data, efficient bus utilization!  
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Section 4a: cache coherency 

Functional  pipeline 
partitioning 

Data parallel 
partitioning 

Software 
Application view 

Section 1 Section 2 

System 
implementation view 

Section 3 Section 4a 
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No cache coherency?  problem example 1 

 

Core 1 writes value 'a' to address P. It has a 'write-back' cache policy, 
so the value will stick in its cache, is not yet flushed to memory. 

Core 2 reads from address P. This address is not yet in its cache, the 
cache miss fetches the value from memory. The read delivers an 
outdated (wrong) value, since 'a' was not in memory. 

Core 1 

Cache 1 

Core 2 

Cache 2 

Shared 
memory 

X 
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No cache coherency?  problem example 2 

 

Core 1 writes value 'a' to address P. The value (the cache line) gets 
somehow flushed to memory. 

Core 2 reads from address P. This address appears in its cache. The data 
in the cache-line is outdated. The read delivers a wrong value. 

Cache coherency issues do NOT occur inside a dual-core ARM, or inside a 
multi-core / multi-cpu Intel machine, thanks to HW cache coherency. 

Issues DO occur between the ARM and the DSP inside OMAP-DaVinci 

 

Core 1 

Cache 1 

Core 2 

Cache 2 

Shared 
memory 

X 
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Cache coherency - industry support (1) 

Defacto standard for homogeneous multi-core processors 

The processor centric view through decades of computer 
architecture history, resulted in marginal support for cache-
coherent co-processors/accelerators: 

PCI(-e) protocols do not have (symmetrical) cache-
coherency support. 

The cache coherency features of IBMs 'CoreConnect' did 
not make it into Xilinx' subset of its PLB bus. 

The cache coherency extensions of ARM's AMBA 4 bus 
were postponed for a long time, and did not yet make it into 
Xilinx'  “Zync” series or TI's “OMAP” series! 
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Cache coherency - industry support (2) 

Current industry standard: one-way coherency 

Multi-core CPUs are mutually cache-coherent 

Co-processor traffic to shared memory 'snoops' processor caches, 
for both reads and writes. 

Co-processor caches are presumed absent: CPU-to-memory 
traffic ignores Co-processors 

Examples: 

PCI(-e) traffic passes through CPU memory controller. 

ARM cortex MPCore in Xilinx' Zync with its AXI 'Accelerator 
Coherency Port' towards the FPGA fabric 

Next generation products might adopt ARM's AMBA 4 ACE 
“CoreLink Cache Coherent Interconnect” for symmetrical 
coherency (first instance: ARM's “Big-Little” strategy) 
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ARM (A9) multicore example 

FPGA or GPU 

DDR 

L
2
 C

a
c
h
e
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Freescale multicore example 

Cache-coherent fabric, peripherals have a 'reduced' interface 
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Intel (i5) multicore example 

FPGA or GPU 

DDR 

 

Device reads will be pulled from CPU L1/L2/L3 caches  

Device writes first flush & invalidate matching CPU cache lines to DDR 

     then finish device writes to DDR  

PCIe 3.0 improves on writes with new caching hints in the protocol 
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Cache coherency - statements 

Hardware cache coherency is required for application multi-
thread libraries and multi-core OS support. 

HW-CC is decades old and proven technology. For CMP (chip 
multi-processors) there is no sufficient reason to omit this. 

HW-CC is not yet found in heterogeneous (embedded) systems. 
Due to HW architects underestimating SW consequences… 
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Section 4a: memory consistency 

Functional  pipeline 
partitioning 

Data parallel 
partitioning 

Software 
Application view 

Section 1 Section 2 

System 
implementation view 

Section 3 Section 4b 
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Memory consistency: read/write ordering 

Different models/contracts that specify memory orderings. E.g.: 

Sequential consistency: 

All processors observer memory updates to a particular cell or 
page as occuring in the same order. 

Writes from a single processor are observed in issue order. 

No guarantee on the interleaving from different processors, nor 
about different memory locations. 

Pipelined consistency (weaker then 'sequential'): 

Writes from a single processor are observed in issue order. 

Interleavings from different processors might be seen differently 
by other processors. 

 A solid platform specification is required for programmability! 
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Memory consistency / ordering 

Processor A:     Processor B: 
A = compute_result();  while (!Flag); // wait for data 

Flag = 1;      use_result(A); 

Such SW can easily produce wrong results due to reordering: 
- When compiler re-orders instructions 
- When CPU does out-of-order instruction execution 
- When Flag is in a faster section of memory then A. 
 

Prevent instruction re-ordering, and/or insert 'memory barriers': 

A = compute_result();  while (!Flag); // wait for data 

__sync_synchronize();  __sync_synchronize(); 

Flag = 1;      use_result(A); 

 

Was weakly specified in C, subtle differences among compilers. 
C++11 has standardized support. 

Easily introduces bugs that are very hard to find! 
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Todays state... 

 ARM: “Memory coherency in a Cortex-A9 MPCore is maintained 
following a weakly ordered memory consistency model.” 

 This is similar to PowerPC and Mips architecture. 

 Intel is growing its number of cores with strong consistency. 
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Conclusion 

 

Today’s multi-core CPUs need multi-threaded applications. 

SW threads useful as abstraction for accelerator functionality. 

GP-GPU acceleration gets more popular then FPGA accelerators. 
Application of FPGA's requires a broad range of capabilities. 

HW cache-coherency is highly valuable for the SW programmer, but 
still ignored by architects of heterogeneous SoCs. 

Hand-writing of multi-threaded SW is highly error-prone. 
Inter-thread data dependencies are easily overlooked, 
e.g. inside library components. (C++ STL containers!) 
Use tools for analysis & verification! 
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Questions? 

 

Today’s multi-core CPUs need multi-threaded applications. 

SW threads useful as abstraction for accelerator functionality. 

GP-GPU acceleration gets more popular then FPGA accelerators. 
Application of FPGA's requires a broad range of capabilities. 

HW cache-coherency is highly valuable for the SW programmer, but 
still ignored by architects of heterogeneous SoCs. 

Hand-writing of multi-threaded SW is highly error-prone. 
Inter-thread data dependencies are easily overlooked, 
e.g. inside library components. (C++ STL containers!) 
Use tools for analysis & verification! 
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Questions? 

Functional  pipeline 
partitioning 

Data parallel 
partitioning 

Software 
Application view 

Section 1 Section 2 

System 
implementation view 

Section 3 Section 4 



Thank you 

Check www.vectorfabrics.com for a free demo on concurrency analysis 

http://www.vectorfabrics.com/

