
Mapping applications into MPSoC
concurrency & communication

Jos van Eijndhoven
jos@vectorfabrics.com

March 12, 2011

DATE MPSoC tutorial 2 | March 12, 2012

MPSoC mapping: exploiting concurrency

DATE MPSoC tutorial 3 | March 12, 2012

Computation on general purpose CPUs

CPUs are generic work horses

From 1, to 2, to 4, to ... CPUs to grow
performance

Shared memory abstraction is costly
in HW. (multi-level caches, snooping)

This abstraction is needed for multi-
threaded software: applications and
operating system.

Area(ALU)/Area(CPU) is very low (1%?)

AMD Fusion Llano

NVidia Tegra3

DATE MPSoC tutorial 4 | March 12, 2012

Computational efficiency beyond CPU

General-purpose CPUs are (traditionally) designed to handle
code with complex control-flow

DSPs emphasize efficient processing of regular compute

But DSP and CPU architectures are evolving towards each other.

How to significantly increase operations/sec/$ and operations/J ?

Hand-off compute load to:

Function-specific accelerators
(H264 decode, LTE channel decode, GFX rendering, IP packet processing, ...)

GP-GPU: general-purpose programmable graphics processor units

FPGA accellerators: Field programmable gate arrays

GP-GPU and FPGA allow new workloads on off-the-shelf silicon

DATE MPSoC tutorial 5 | March 12, 2012

MPSoC programmability??

Silicon technology: incomprehensible growth transistors/chip

SoC architecture: complex systems, many homogeneous and
heterogeneous processor cores, non-uniform memory

Who is the poor programmer to put these devices into good use?

Limited SW creation cost (re-use & portability)

Efficient use of HW resources

Clean SW design (free of bugs)

Timely delivery

. . .

DATE MPSoC tutorial 6 | March 12, 2012

Presentation theme: concurrency & data

Programmability of multi-processors:

Concurrency: distribution of operations

Memory mapping: distribution of data

DATE MPSoC tutorial 7 | March 12, 2012

Embedded system Application mapping

Sequential reference application

CPU-thread Accelerator-thread

Insert thread-level parallellism

thread1 thread2 thread3 thread7 thread6 thread5 thread4

And more...

Tough issues are not in OPERATIONS, but in DATA:
 Parallelism is typically hindered by data dependencies
 Data must be available in local/nearby memories

Create
function

parallelism

Create
data

parallelism

DATE MPSoC tutorial 8 | March 12, 2012

Presentation further Sections 1 ... 4

Functional pipeline
partitioning

Data parallel
partitioning

Software
Application view

Section 1 Section 2

System
implementation view

Section 3 Section 4

DATE MPSoC tutorial 9 | March 12, 2012

Section 1: application functional pipelining

Functional pipeline
partitioning

Data parallel
partitioning

Software
Application view

Section 1 Section 2

System
implementation view

Section 3 Section 4

DATE MPSoC tutorial 10 | March 12, 2012

Function pipelining: partitioning

int A[N][M];

while (..)

{ produce_img();

 consume_img();

}

produce_img()

{ for (i ...)

 for (j ...)

 A[i][j] = ...

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = A[i][j];

}

Loop distribution:
Thread1: while (..)

 produce_img();

Thread2: while (..)

 consume_img();

Synchronize thread progress:

True dependency: consumer
must wait for valid data

Anti dependency: producer
must wait with over-writing until
after consumption

DATE MPSoC tutorial 11 | March 12, 2012

Function pipelining: synchronization

int A[N][M];

while (..)

{ produce_img();

 consume_img();

}

produce_img()

{ for (i ...)

 for (j ...)

 A[i][j] = ...

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = A[i][j];

}

Thread1: while (..)

 produce_img();

Thread2: while (..)

 consume_img();

Channel ch;

produce_img()

{ for (i ...)

 for (j ...)

 write_int(ch, ...)

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = read_int(ch);

}
Channel access functions

implement thread stall.

DATE MPSoC tutorial 12 | March 12, 2012

Pipeline dependency analysis

Potential pipelining
showed in colors,

with resulting Fifo's

DATE MPSoC tutorial 13 | March 12, 2012

Function pipelining: Channel APIs

Too many choices for channel-based communication:

Standard Java util.concurrent queue classes

Intel’s TBB (C++) queues

Linux 'pipes' and 'sockets'

OpenCL channels

OpenMAX IL for streaming media processing

MPI message-passing channels

. . .

Very different queue implementations:

Inter-thread, inside process memory context

Inter-process, inside shared-memory system

Inter-system, through device interfaces

NOTE: C++ STL queues are NOT thread-safe!

DATE MPSoC tutorial 14 | March 12, 2012

Section 2: data parallelism in applications

Functional pipeline
partitioning

Data parallel
partitioning

Software
Application view

Section 1 Section 2

System
implementation view

Section 3 Section 4

DATE MPSoC tutorial 15 | March 12, 2012

Data parallelization: multi-core scalability

int sum = 0;

for (i=0; i<N; i++) {

 int value = some_work(i);

 sum += value;

}

 Distribute the workload over multiple cores.
 Each core handles part of the loop index space.

 int sum = 0;

#pragma omp parallel for reduction (+:sum)

for (i=0; i<N; i++) {

 int value = some_work(i);

 sum += value;

}

Workload scales nicely across multiple cores

Easy to write down , but hard to grasp all consequences!
 Highly dangerous, might cause extremely hard-to-track bugs!

DATE MPSoC tutorial 16 | March 12, 2012

Application Analysis

DATE MPSoC tutorial 17 | March 12, 2012

Section 3: coprocessors and data channels

Functional pipeline
partitioning

Data parallel
partitioning

Software
Application view

Section 1 Section 2

System
implementation view

Section 3 Section 4

DATE MPSoC tutorial 18 | March 12, 2012

GPU or FPGA next to CPU

GP-GPU:

High floating point
performance (>1TFlops)

Large off-chip memory
bandwidth

Needs thousands of
concurrent threads (SPMD)

Few inter-thread data
dependencies and little
data-dependent control

High-end chips take huge
power (>100W)

FPGA:

High integer performance
(>1Tops)

Application-specific off-chip
data interfaces.

Needs hundreds of
concurrent instructions (ILP)

Takes HW design expertise
and effort.

High-end chips are very
expensive (>$1000)

DATE MPSoC tutorial 19 | March 12, 2012

CPU – FPGA combinations

Xilinx 'Zync' contains dual ARM

Or all kinds of boards to fit PC architecture

DATE MPSoC tutorial 20 | March 12, 2012

CPU – GPGPU combinations

NVidia Tesla for
high-end
compute

Imgtec
PowerVR

for mobile SoC

AMD Fusion for
Tablet, Desktop, ...

DATE MPSoC tutorial 21 | March 12, 2012

Application - Accelerator co-processing

Conceptually nice picture, real implementation hurdles:

Application I/O to hardware is shielded by any 'real' operating system

Thread control (sleep/wakeup) interacts with Accelerator progress

Functional pipelining, some thread mapped to HW accelerator,

channels for inter-thread data transport:

Application

CPU-thread 1 Accelerator CPU-thread 2 Channel Channel

DATE MPSoC tutorial 22 | March 12, 2012

Memory-mapped channel communication

Buffered communication channel in software:

Channel read/write blocks thread progress on empty/full fifo buffer.

Implementation with 'semaphores' or 'monitors' causes the OS to sleep
and wake-up the threads as needed.

Channel data is fully cached for efficient CPU access, under HW
cache-coherency control.

When one of the 'threads' is actually a hardware accelerator:

Memory paging, coherency, and consistency issues

Interact with the OS thread scheduler for wake-up

Thread 1 Thread 2 Channel

DATE MPSoC tutorial 23 | March 12, 2012

HW/SW communication stack

Application SW
virtual address space

CPU-side
stack

Linux

Multi-core CPU
with MMU and caches

PCI-e / AXI memory bus

PCIe / AXI interface

Lapack
accelerator

Crypto
accelerator

DDR

Accelerator-side
(FPGA) stack

Snoop Control unit

User-level driver

Kernel driver

DMA stream engine
Fifo interfaces to accelerators
Access to embedded srams

Compute library
eg lapack, crypto Channel

Channel

DATE MPSoC tutorial 24 | March 12, 2012

Streaming DMA engine in FPGA

Fifo ram acts as cache for larger fifo buffer in host memory,
performs explicit cache control (write-back, invalidate)

Creates interrupts to wakeup selected software threads on host OS

Bus slave Bus master

Transfer
controller

Fifo
ram

Page
table

Fifo
ram

Fifo
ram

PCIe bridge

PCIe
to host

Interrupt
controller

FPGA local bus

DATE MPSoC tutorial 25 | March 12, 2012

Linux kernel driver

Traditional driver:

Provides open(), read(), write() to application SW.

Disadvantage: read/write are expensive.
Require transition to 'kernel mode' on each call.

Up-to-date approach:

Provide mmap(): application gets direct access to FPGA memory
through pointer dereferencing. Typically uncached!

Furthermore:

Provide Interrupt-Service-Routine for accelerator stream-engine.
Signals Linux kernel to wake-up appropriate application thread.

Unfortunately, writing kernel-level device drivers is not popular among
application SW developers nor among HW FPGA developers.

DATE MPSoC tutorial 26 | March 12, 2012

Streaming to GP-GPU accelerator

OpenCL 'Streaming':

CPU and GPU process concurrently: buffered command queues

Data exchange through PCIe shared memory space

Relying on DMA support in the GPU device driver

Application programming gets considerably complicated

“clEnqueueMapBuffer()... this is not
an easy API call to use and comes
with many constraints, such as page
boundary and memory alignment”

DATE MPSoC tutorial 27 | March 12, 2012

Section 3 CPU <-> accelerator: final notes

CPU initiated communication

CPU load/stores directly into device internal address space

Scalar load/stores in uncached device memory space:
 High latency, low bandwidth

Device setup and control traffic!

Accelerator initiated communication (DMA)

Burst-mode transfers initiated by accelerator, into DDR space

CPU load/store operations into local cache

Cache-coherent through CPU snooping support

High bandwidth, streaming data, efficient bus utilization!

DATE MPSoC tutorial 28 | March 12, 2012

Section 4a: cache coherency

Functional pipeline
partitioning

Data parallel
partitioning

Software
Application view

Section 1 Section 2

System
implementation view

Section 3 Section 4a

DATE MPSoC tutorial 29 | March 12, 2012

No cache coherency? problem example 1

Core 1 writes value 'a' to address P. It has a 'write-back' cache policy,
so the value will stick in its cache, is not yet flushed to memory.

Core 2 reads from address P. This address is not yet in its cache, the
cache miss fetches the value from memory. The read delivers an
outdated (wrong) value, since 'a' was not in memory.

Core 1

Cache 1

Core 2

Cache 2

Shared
memory

X

DATE MPSoC tutorial 30 | March 12, 2012

No cache coherency? problem example 2

Core 1 writes value 'a' to address P. The value (the cache line) gets
somehow flushed to memory.

Core 2 reads from address P. This address appears in its cache. The data
in the cache-line is outdated. The read delivers a wrong value.

Cache coherency issues do NOT occur inside a dual-core ARM, or inside a
multi-core / multi-cpu Intel machine, thanks to HW cache coherency.

Issues DO occur between the ARM and the DSP inside OMAP-DaVinci

Core 1

Cache 1

Core 2

Cache 2

Shared
memory

X

DATE MPSoC tutorial 31 | March 12, 2012

Cache coherency - industry support (1)

Defacto standard for homogeneous multi-core processors

The processor centric view through decades of computer
architecture history, resulted in marginal support for cache-
coherent co-processors/accelerators:

PCI(-e) protocols do not have (symmetrical) cache-
coherency support.

The cache coherency features of IBMs 'CoreConnect' did
not make it into Xilinx' subset of its PLB bus.

The cache coherency extensions of ARM's AMBA 4 bus
were postponed for a long time, and did not yet make it into
Xilinx' “Zync” series or TI's “OMAP” series!

DATE MPSoC tutorial 32 | March 12, 2012

Cache coherency - industry support (2)

Current industry standard: one-way coherency

Multi-core CPUs are mutually cache-coherent

Co-processor traffic to shared memory 'snoops' processor caches,
for both reads and writes.

Co-processor caches are presumed absent: CPU-to-memory
traffic ignores Co-processors

Examples:

PCI(-e) traffic passes through CPU memory controller.

ARM cortex MPCore in Xilinx' Zync with its AXI 'Accelerator
Coherency Port' towards the FPGA fabric

Next generation products might adopt ARM's AMBA 4 ACE
“CoreLink Cache Coherent Interconnect” for symmetrical
coherency (first instance: ARM's “Big-Little” strategy)

DATE MPSoC tutorial 33 | March 12, 2012

ARM (A9) multicore example

FPGA or GPU

DDR

L
2
 C

a
c
h
e

DATE MPSoC tutorial 34 | March 12, 2012

Freescale multicore example

Cache-coherent fabric, peripherals have a 'reduced' interface

DATE MPSoC tutorial 35 | March 12, 2012

Intel (i5) multicore example

FPGA or GPU

DDR

Device reads will be pulled from CPU L1/L2/L3 caches

Device writes first flush & invalidate matching CPU cache lines to DDR

 then finish device writes to DDR

PCIe 3.0 improves on writes with new caching hints in the protocol

DATE MPSoC tutorial 36 | March 12, 2012

Cache coherency - statements

Hardware cache coherency is required for application multi-
thread libraries and multi-core OS support.

HW-CC is decades old and proven technology. For CMP (chip
multi-processors) there is no sufficient reason to omit this.

HW-CC is not yet found in heterogeneous (embedded) systems.
Due to HW architects underestimating SW consequences…

DATE MPSoC tutorial 37 | March 12, 2012

Section 4a: memory consistency

Functional pipeline
partitioning

Data parallel
partitioning

Software
Application view

Section 1 Section 2

System
implementation view

Section 3 Section 4b

DATE MPSoC tutorial 38 | March 12, 2012

Memory consistency: read/write ordering

Different models/contracts that specify memory orderings. E.g.:

Sequential consistency:

All processors observer memory updates to a particular cell or
page as occuring in the same order.

Writes from a single processor are observed in issue order.

No guarantee on the interleaving from different processors, nor
about different memory locations.

Pipelined consistency (weaker then 'sequential'):

Writes from a single processor are observed in issue order.

Interleavings from different processors might be seen differently
by other processors.

 A solid platform specification is required for programmability!

DATE MPSoC tutorial 39 | March 12, 2012

Memory consistency / ordering

Processor A: Processor B:
A = compute_result(); while (!Flag); // wait for data

Flag = 1; use_result(A);

Such SW can easily produce wrong results due to reordering:
- When compiler re-orders instructions
- When CPU does out-of-order instruction execution
- When Flag is in a faster section of memory then A.

Prevent instruction re-ordering, and/or insert 'memory barriers':

A = compute_result(); while (!Flag); // wait for data

__sync_synchronize(); __sync_synchronize();

Flag = 1; use_result(A);

Was weakly specified in C, subtle differences among compilers.
C++11 has standardized support.

Easily introduces bugs that are very hard to find!

DATE MPSoC tutorial 40 | March 12, 2012

Todays state...

 ARM: “Memory coherency in a Cortex-A9 MPCore is maintained
following a weakly ordered memory consistency model.”

 This is similar to PowerPC and Mips architecture.

 Intel is growing its number of cores with strong consistency.

DATE MPSoC tutorial 41 | March 12, 2012

Conclusion

Today’s multi-core CPUs need multi-threaded applications.

SW threads useful as abstraction for accelerator functionality.

GP-GPU acceleration gets more popular then FPGA accelerators.
Application of FPGA's requires a broad range of capabilities.

HW cache-coherency is highly valuable for the SW programmer, but
still ignored by architects of heterogeneous SoCs.

Hand-writing of multi-threaded SW is highly error-prone.
Inter-thread data dependencies are easily overlooked,
e.g. inside library components. (C++ STL containers!)
Use tools for analysis & verification!

DATE MPSoC tutorial 42 | March 12, 2012

Questions?

Today’s multi-core CPUs need multi-threaded applications.

SW threads useful as abstraction for accelerator functionality.

GP-GPU acceleration gets more popular then FPGA accelerators.
Application of FPGA's requires a broad range of capabilities.

HW cache-coherency is highly valuable for the SW programmer, but
still ignored by architects of heterogeneous SoCs.

Hand-writing of multi-threaded SW is highly error-prone.
Inter-thread data dependencies are easily overlooked,
e.g. inside library components. (C++ STL containers!)
Use tools for analysis & verification!

DATE MPSoC tutorial 43 | March 12, 2012

Questions?

Functional pipeline
partitioning

Data parallel
partitioning

Software
Application view

Section 1 Section 2

System
implementation view

Section 3 Section 4

Thank you

Check www.vectorfabrics.com for a free demo on concurrency analysis

http://www.vectorfabrics.com/

