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Abstract

A compiler-simulator framework must be retargetable to
enable platform-based processor design as well as proper
processor architecture design space exploration. This paper
describes the design decisions taken for the retargetability
mechanism of the Philips Research compiler-simulator
framework driven by a central machine description file. The
format of the machine description file plays an important
role in defining the scope of retargetability of a compiler-
simulator framework. The machine description format
PRMDL used in Philips Research supports a wide variety of
VLIW architectures. In particular, PRMDL is capable of
expressing clustered architecture features such as
incomplete bypass networks, multiple register files, along
with functional units shared or distributed among multiple
issue slots, diverse conditional operation mappings, and
more. The structure of PRMDL features separate software
and hardware views on a processor. This insures robustness
of retargetability built into tools across several processor
generations.

1. Introduction

As time-to-market requirements demand faster design
cycles, more programmable components are introduced in
embedded systems. We are exposed to a substantial shift of
system functionality from hardware to software. In order to
use massive hardware parallelism efficiently, an increasingly
complicated compilation trajectory should be developed.
However, its complexity should not affect system
development time. Hence, traditional compilers, which must
be rewritten for every new processor generation (see Figure
1), do not suffice any more.

Figure 1. A traditional compilation trajectory

This implies that the compilation trajectory must be able
to change its target machine quickly and easily, which can be

achieved by parameterising a compiler toolchain (see Fig
2). The compiler tools read target machine parameters fr
a machine description file and adjust their processi
accordingly. To retarget the whole compiler toolchain on
only needs to change the target processor description in
machine description file. This scheme enables substan
reuse of the complicated compiler software [2].

Figure 2. A retargetable compilation trajectory

In the design of advanced processors like the new 64-
TriMedia CPU64 [3] many decisions must be taken. F
example, one of the most challenging tasks in the design
the CPU64 was studying the impact of the quantity and s
assignment of the functional units. The size of the desi
space for this task had 1015possible solutions [1]. Such tasks
need systematic exploration of the design space w
numerous iterations over processor instances in order
provide quantitative data that design decisions can be ba
on. For this purpose a retargetable design space explora
(DSE) framework including both retargetable simulator an
compiler should be deployed (see Figure 3). Varyin
parameters in the machine description file quickly retarge
the machine-independent compiler and simulator witho
even recompiling the framework.

Figure 3. A retargetable DSE framework

The format of the machine description file reflects th
scope of framework retargetability and thus decides betwe
fixed elements and configurable elements of the architect
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template. Consequently, the format has a great influence on
reuse of the framework across multiple processor
generations, the maintenance of the framework, as well as
on framework performance characteristics.

2. Related work

Existing machine description languages, in which target
processor parameters are expressed, differ considerably. In
order to put PRMDL (Philips Research Machine
Description Language) in perspective with other languages,
one can consider the classification described in [4], which
presents three categories. Behavioural machine description
languages (nML [8], ISDL [7], Insulin, etc.) describe a
processor in terms of its instruction set. Structural machine
description formats (MIMOLA [9], MLRISC, etc.)
primarily focus on a structural model of the architecture.
Mixed-level languages (PRMDL, EXPRESSION [4],
HMDes [5], LISA [6], etc.) combine both structural and
behavioural views and drive both compiler and simulator
(see Figure 3).

Compared to HMDes, the PRMDL format is simpler and
requires less programming effort than HMDes. HMDes
captures constraints between operations with explicit
reservation tables, using a hierarchical description for
compactness. While PRMDL aims primarily all at compilers
and simulators for TriMedia CPUs, HMDes appears to suit
better research-oriented architecture explorations.

EXPRESSION has syntax simplicity and coverage of
architectures similar to PRMDL. Among its strong points
are the explicit specification of the memory subsystem and
the graphical user interface. In EXPRESSION, like in
PRMDL, the reservation tables for the processor operations
are derived from the processor structural description.
EXPRESSION features plain LISP-like syntax and relative
ease of modifications. However, having about one thousand
operation mappings in the TriMedia compilation trajectory,
more concise and legible PRMDL description of mappings
is advantageous. On top of that, the PRMDL syntax allows
mapping across architectures with different data path widths
and various conditional mappings (see Section 4.4).

3. Physical and virtual machines

PRMDL features explicitly separate software and
hardware views on the processor (see Figure 4). The
physical machine constituting the hardware view
accommodates all parameters of the processor hardware
architecture, such as register file and issue slot parameters.
The virtual machine constituting the software view contains
the programming model of the processor. Using software
operations from the virtual machine, the application
programmer writes code in C. During the compilation of the
application the software operations are mapped on hardware

operations from the physical machine. The virtual machi
operation to physical machine operation mappings a
denoted by arrows in Figure 4.

The virtual machine remains constant throughout seve
generations of the processor hardware, which preserve
source-level compatibility. One virtual machine in Figure
provides the programmer with a uniform software interfac
to multiple physical machines. Changes in the process
hardware influence not the C code but the machi
description file. For example, if a hardware operation is le
out in the next processor generation, only rewriting th
mappings in the machine description file for softwar
operations mapped onto the missing hardware operation
required.

Figure 4. Separate software and hardware views

The software operation descriptions in a virtual machin
carry operand and result type information, which enabl
type-checking in C sources, while the hardware operatio
in a physical machine are type-independent, so that the sa
hardware operation can be used with different argument a
result types. The instruction set architecture of the virtu
machine shows an orthogonal set of operations over d
types, which simplifies programming. On the other hand, t
physical machine instruction set is reduced and reflects
processor hardware operations, which are sometimes t
independent. The explicit separation of the physic
machine and virtual machine also aids the maintenance
the large sets of hardware and software operations in
compiler-simulator framework.

4. PRMDL overview

The structure of the PRMDL format is as follows:
MACHINE_DESCRIPTION

DECLARATION

TYPES

RANGES

SIDE_EFFECTS

DATA_PATH_POINTS

PHYSICAL_MACHINE  (* Hardware view on the CPU *)

STATE

SLOTS

FUNCTIONAL_UNITS

Virtual
Machine

Physical

stable software view

hardware views

Machine N
Physical

Machine 1 ...
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DATA_PATHS

PHYSICAL_OPERATIONS

VIRTUAL_MACHINE  (* Software view on CPU *)

VIRTUAL_OPERATIONS

CODE_CONVENTIONS

MAPPING_SECTIONS

The next four sections will elaborate on this structure.

4.1 Declaration

Essentially, the DECLARATION section is intended to
improve legibility (types and ranges) and flexibility (side-
effects) of the machine descriptions, as well as to ensure
robust consistency checks. The TYPES section enumerates
possible operand and result types of a virtual operation. The
RANGES section describes integer ranges used in the
descriptions of operation immediates, conditional
mappings, and code convention clauses. The
SIDE_EFFECTS list declares the side-effect hierarchy used
by a compiler for generating ordering constraints between
virtual operations. The DATA_PATH_POINTS section
contains data path points that are not declared in the port
sections of the slots and register files, but still designate
resource conflicts in the described architecture. A
declaration example:

DECLARATION

TYPES

vec64sb, (* 64-bit signed byte vector *)

vec64ub; (* 64-bit unsigned byte vector *)

RANGES

pi8by2: -128 TO 126 STEP 2, (* a range for an immediate *)

pu3p2: POWER2 (0 TO 3); (* a non-linear range *)

SIDE_EFFECTS

pcsw, pcsw.intround, pcsw.fpflags; (* a side-effect hierarchy *)

DATA_PATH_POINTS

common_bus, switch; (* extra data path points *)

The rangePOWER2(0 TO 3)denotes the integer set
{0,1,2,4,8}. The side-effect hierarchy (see in detail Section
4.2) in this example specifies two side-effectspcsw.intround
and pcsw.fpflags,that can also be addressed together as
pcsw. pcswdenotes the Program Control and Status Word
register in TriMedia processors, which contains processor
control and status bits such as floating point exception flags
(pcsw.fpflags), integer round mode bits (pcsw.intround), etc.

4.2 Physical Machine

The Physical Machine section contains the processor
hardware model, including a hardware operations list. The
STATE section describes processor resources holding its
state (primarily register files, but also other types of
processor memory). In the STATE section one can describe
register file properties, such as register width, number of
registers, constant registers, access time, read/write ports,
overlapping, access type (e.g. random, FIFOs, LIFOs), look-
up tables, etc.

STATE

rf0 WIDTH 64 (* register file rf0 *)

NUMBER 128 (* 128 64-bit registers *)

INDEX_RANGE 0 TO 127 (* index range is from 0 to 127 *)

ACCESS_MANNER random (* random access RF *)

PORTS (wp0, wp1 -> gp0,rp0,rp1,rp2,rp3) ; (* write/read ports *)

The distribution of functional units among VLIW issue
slots is described in the FUNCTIONAL_UNITS section
There are three types of functional units in PRMDL: a
ordinary functional unit, which occupies one issue slot,
super functional unit, which occupies more than one iss
slots [3], and a shared functional unit, which can b
controlled via several issue slots.

Figure 5. Functional unit types

The configuration in Figure 5 includes slot0 and slo
with four functional unit instances: two FU0 of the ordinar
type, one super functional unit FU1, and one shar
functional unit FU2. A description of this structure in the
PRMDL language is as follows:

SLOTS

slot0 (a,b->c), slot1 (d,e->f); (* two slots are defined *)

FUNCTIONAL_UNITS

FU0 (* two instances of an ordinary functional unit *)

SLOTS  slot0(b->c), slot1(d->f);

TIME_SHAPE (0->1)

UNIT_OPERATIONS op1(0), op2(1);

FU1 (* a super functional unit *)

SLOTS  slot0(a,b->) & slot1(d,e->f);

TIME_SHAPE (0,0,1,1->2)

UNIT_OPERATIONS op3(2),op4(3);

FU2 (* a shared functional unit *)

SLOTS slot0(b->c) | slot1(e->f);

TIME_SHAPE (0->9)

UNIT_OPERATIONS op5(4);

The TIME_SHAPE clauses specify timing properties o
functional unit operations. For example, the expressi
TIME_SHAPE (0,0,1,1->2)specifies that the first two
arguments of an operation from the functional unit FU
arrive in cycle 0 to the slot ports, the two others can be re
in cycle 1, and the result is produced in cycle 2.

The DATA_PATH section specifies intra-processo
connectivity. It primarily serves to define resource conflic
on the register file or slot ports or some abstract data p

FU0

d e f

slot0

FU1

a b c

slot1FU2

FU0
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points defined in the DECLARATION section. The bypass
networks, writeback-bus schedulers, and inter-cluster
communication paths can all be described in the
DATA_PATH section.

Figure 6. Various data paths

rp0, rp1, wp0, wp1, ip0, ip1, op0, op1 in Figure 6
designate read, write, input, and output ports, respectively. A
description of the processor data paths in Figure 6 is as
follows:

DATA_PATHS

rp0 -> ip0 DELAY 0; (* a read bus *)

rp1 -> ip1 DELAY 0; (* a read bus *)

op0 -> wp0, ip0 DELAY 0; (* a writeback bus and bypass *)

op1 -> wp1, ip1 DELAY 0; (* a writeback bus and bypass *)

rp0 -> ip1 DELAY 1; (* inter-cluster communication *)

rp1 -> ip0 DELAY 1; (* inter-cluster communication *)

The PHYSICAL_OPERATIONS section contains
operation names, guards, arguments, results, properties, and
side-effects. All this information is combined in operation
signatures. The signature inputs can be issue slot operands
designated by ‘*’, immediate arguments designated by the
range name that the immediate must fit, and read side-
effects. The outputs can be either issue slot operands or write
side-effects. An optional guard ‘*?’ specifies that the
operation is conditional. For example, the line

PHYSICAL_OPERATIONS

SIGNATURE (*? *,*->*,*,pcsw.fpflags) pop1, pop2;

defines properties of the physical operationspop1 and
pop2, which are guardable, take two operands, return two
results, and write topcsw.fpflags (a side-effect).

In PRMDL terms, side-effects are changes in the machine
state apart from direct input/output data flow (e.g. in a
register file) caused by operations. Examples of side-effects
are machine flags affected by floating point operations, a
program counter affected by branch operations, memory
changes affected by load/store operations, etc. The compiler
can use them to generate sequential ordering constraints for
operations. Initially, the side-effects are specified in the
physical signatures, from which all physical operations,
subsequently, inherit them. Virtual operations are translated
into physical ones during the compilation process. Therefore
they must inherit side-effects from the corresponding
physical operations in order to enable the ordering
constraints generation by the compiler front-end. The

propagation of side-effects from physical to virtua
operations ensures conciseness and consistency of
operation property descriptions.

4.3 Virtual Machine

The Virtual Machine section contains the programmin
model of the processor. The VIRTUAL_OPERATIONS
section includes software operation signatures, whi
contain operation names, argument and result types,
operation properties. For example, the lines

VIRTUAL_OPERATIONS

SIGNATURE (vec64sb,vec64sb->int64) COMMUTATIVE vop1,vop2;

describe commutative operationsvop1andvop2, which
take two operands of the typevec64sband return a result of
the typeint64. Thevec64sbandint64types must be declared
in the DECLARATIONS section. The compiler front-end
can use this type information in type checking and castin

The CODE_CONVENTIONS section includes a list o
compiler-oriented code conventions such as the return va
register, the stack pointer register, global and local regis
pools, etc.

4.4 Mapping

The MAPPINGS_SECTION sections define operatio
transformations, capable of driving parameterised co
selection at all compilation stages. The mappings c
include conditional clauses, where an operation is mapp
onto different groups of operations depending on a conditi
that should be matched by an immediate argument of
operation. The Mapping section syntax also allows defini
instruction set transformations across architectures w
different data path widths.

Each mapping section can include two types of mapping
conditional mappings and ordinary mappings. An ordina
mapping defines a transformation of a source operation i
a set of target operations.

MAPPINGS

vimm8 (i8 -> z) = pimm16 ((i8<<8)+i8 -> z); (* parameter expression *)

sb_subsame (x,y -> z) = packsame_b (y ->A ), sub_b (x,A ->z );

The mappings can have temporary variables, parame
expressions, and references to processor registers.
PRMDL format is also capable of specifying mapping
across architectures with different data path sizes (e.g. fr
a 128-bit CPU onto a 64-bit one). In order to do so PRMD
allows to address fractions of the arguments and results:

vadd128 (x,y->z) = vadd64 (x.0, y.0 -> z.0), vadd64 (x.1, y.1 -> z.1);

In this examplex.0, y.0, andz.0refer to the lower 64 bits
of the arguments and results, whilex.1, y.1, andz.1denote
the upper 64 bits.

Conditional mappings describe a transformation of
source operation onto different sets of target operatio

ip0 op0 op1ip1

rp0 wp0 rp1 wp1

register_file0

slot0 slot1

register_file1
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depending on a condition, which is evaluated with a help of
immediate arguments of the source operation. The possible
condition types are the following:

1. fitting a declared range:
SWITCH vmul (x,y->z) =

CASE y IN_RANGE POWER2(imm_range1)

vshift(x,LOG2(y)->z);

This type of mapping is especially useful for custom
operations with immediates, which can differ from
processor to processor significantly. The code selection for
these operations can be parameterised using such mappings.

2. fitting the range of an argument of a physical operation:
SWITCH vmul (x,y->z) =

CASE y IN_RANGE OPERATION_RANGE (pimul)

pimul;

CASE x IN_RANGE OPERATION_RANGE (pimul)

pimul (y,x->z);

DEFAULT pmul;

The condition of this mapping is defined by an operation
with an immediate argument rather than by the range of the
immediate itself. In the example above,vmulis mapped onto
pimul if x or y fits the range of an immediate argument of the
operationpimul, otherwise it is mapped onpmul.

3. matching a pattern:
SWITCH vmul (x,y->z)

CASE y FITS_EXPRESSION POWER2(p)+POWER2(q)

pshift (x,p->a), pshift (x,q->b), padd (a,b->z);

DEFAULT pmul;

This mapping can be used to define code selections based
on a pattern matching condition. The example, for instance,
defines the mapping of thevmul operation onto thepshift,
shift, andpaddoperations if there exist integerp andq such
that y = 2p + 2q. This mapping type, however, doesn’t
support simultaneous equations and available operations in
the pattern are limited to+ , -, * , /, POWER2, LOG2, and
NOT.

5. Conclusions
This paper describes a powerful compiler-simulator

retargetability mechanism, which enables template-based
processor design and allows for fast and vast design space
explorations for future clustered VLIW processors. The
mechanism is controlled by framework parameters stored in
a central machine description file. The key features of the
machine description file format PRMDL are as follows:

• Explicit separation of compiler front-end (Virtual
Machine) and back-end (Physical Machine) instruction sets,
which provides better source-code compatibility

• Support for forthcoming clustered architectures with
multiple register files and incomplete connectivity

• C types of arguments in virtual operation signatures

help the compiler to do type checking and casting

• Side-effects in virtual operation signatures help th
compiler to generate optimal ordering constraints fo
operations

• Supported diversity of types of local storage (rando
access register files, LIFOs, FIFOs, etc.)

• Conditional mappings allow full parameterisation o
code selection in the compiler front-end

• Mapping across architectures with different data pat
sizes ensures strong processor family compatibility

• Parameter expressions in mappings allow arithmet
operations on immediates in parameterised code selectio
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