
Design of a 2D DCT/IDCT application specific VLIW processor supporting
scaled and sub-sampled blocks

Rohini Krishnan, O.P.Gangwal, Jos.v.Eijndhoven,
Philips Research Laboratories,
Eindhoven, The Netherlands.

Email : rohini.krishnan@philips.com.

Anshul Kumar,
Dept. Of Computer Science,

Indian Institute Of Technology,
New Delhi.

Abstract

We present an innovative design of an accurate, 2D DCT
IDCT processor, which handles scaled and sub-sampled in-
put blocks efficiently. In the IDCT mode, the latency of the
processor scales with the size of the input blocks varying
from 7 cycles for an 1x1 block to 38 cycles for an 8x8 block.
This scalability is possible because the processor has input
data dependant control by which it can exploit the reduced
computational needs of sub-sampled blocks and blocks of
smaller sizes to work in lesser cycles. This is a very useful
feature for MPEG and HDTV decoders and has hitherto not
been exploited. Clocking at 150 Mhz, the processor satisfies
the high sample rate requirement of dual MPEG stream HD
decoding with a picture size of 1920 x 1080 at 30 frames per
second. Fixed word length and accuracy simulations of our
design shows that it conforms to the accuracy specifications
of the CCITT standard within a 16 bit data path.

A methodology based on architecture level synthesis is
used to design the VLIW processor core. The VLIW de-
sign exploits the Instruction Level Parallelism present in the
DCT/IDCT application, efficiently. The processor core is
characterised by an area of 0.834 mm sq. and a frequency
of 150 Mhz in 0.18 micron CMOS technology.

1 Introduction

The Discrete Cosine Transform (DCT) is a compute
intensive part of the encoders and decoders of JPEG,
MPEG, digital HDTV etc. In the past, several architec-
tures for DCT/IDCT processors for various application do-
mains based on different algorithms have been proposed
[12]. All the previous architectures have been optimised
for either performing IDCT on fixed 8x8 blocks [1] typi-
cally used in decoders (MPEG, JPEG etc.), or performing
both FDCT and IDCT on fixed 8x8 blocks [2]-[6]. None of
these processors are capable of exploiting the reduced com-

putational needs of scaled or sub-sampled blocks to give a
higher throughput. Almost all the hitherto published archi-
tectures have a fixed latency for all blocks. Paek et al [7]
support a dual mode of operating on 8x8 blocks or 2x4x8
blocks for the digital VCR domain, thus providing support
for scaled blocks of size 4x8. In our work, we go a step fur-
ther by providing full support for scaled and sub-sampled
blocks of sizes (1,2,4,8)x(1,2,4,8). Furthermore, the fixed
point accuracy of our design meets the specifications of the
CCITT[10] which is more stringent than that of the digital
VCR domain.

Scaled blocks (of sizes less than 8x8) can arise in MPEG-
2 decoders. For instance, the output of the inverse quan-
tiser in a MPEG-2 decoder, can have many rows with zero
valued coefficients. This output serves as an input to the
inverse DCT processor. Instead of communicating the the
zero valued rows, only the non-zero rows can be commu-
nicated from the output of the inverse quantiser to the in-
verse DCT processor. This would not only reduce the com-
munication between the inverse quantiser and the inverse
DCT processor but also speed up the decoding due to the
reduced computational requirements. Sub-sampled blocks
are those in which components of certain frequencies are
omitted. Sub-sampled blocks can arise, for example, due to
Picture In Picture requirements of HDTV where one picture
is displayed inside another, at the cost of a reduced resolu-
tion of one. Another application where sub-sampled blocks
can arise is in High Definition to Standard Definition down-
conversion. The speed up in decoding can only be achieved
if the inverse DCT processor is capable of working at a re-
duced latency for scaled and sub-sampled blocks.

In summary, the proposed architecture can perform
FDCT and IDCT and in the IDCT mode support sub-
sampled and scaled blocks. It is area-efficient and uses a
common 16 bit data path for performing both FDCT and
IDCT. It shows excellent scaling in its performance by hav-
ing a higher throughput for sub-sampled and scaled blocks.
The latency of the processor varies from 7 cycles to 38 cy-
cles, depending on the input block size. It works at 150

0-7695-1868-0/03/$17.00 (C) 2003 IEEE

Mhz within a latency of 50 cycles and can hence handle
dual MPEG HD stream. The VLIW architecture fully ex-
ploits the instruction level parallelism (ILP) present in the
DCT/IDCT application. It conforms to the accuracy re-
quirements of CCITT[10]. Our approach uses the high level
synthesis methodology offered by A|RT designer[9]. By
working at a high level of abstraction, we explore a larger
design space, evaluate the effect of each design decision on
the area-time constraints early in the design cycle, and per-
form test simulations and functional verification using the
high level C/C++ language. We thus arrive at a feature-rich
processor in a short design time.

2 Algorithm design and fixed point perfor-
mance

Many fast DCT algorithms have been published in
literature[12]. We consider a solution based on the fast al-
gorithm proposed by Loeffler et al. [8], popularly known as
the LLM algorithm. For sub-sampled input data some in-
teresting features of the LLM Signal Flow Graph(SFG) can
be exploited for achieving excellent scaling performance.
Moreover, the LLM algorithm has the least number of mul-
tiplications for non-scaled data output. In addition, the SFG
of LLM for forward and inverse DCTs are mirror images of
one another and hence we can re-use the entire datapath for
performing the forward and inverse transforms.

2.1 Subsampled block support and accuracy

A

B

C

D

kcn
A

B

C

D

A B

FOR

STAGE 1 STAGE 2 STAGE 3 STAGE 4

SQRT(2)C6

0

1

2

3

0

4

2

6

SYMBOL EQUATIONS

D = −Aksin(n pi/2N) + Bksin(n pi/2N)
C = Akcos(n pi/2N) + Bksin(n pi/2N)

B = A/(SQRT(2))

C = A + B
D = A − B

1 MULT

EFFORT

2 ADD

3 MULT +

3 ADD

4

5

6

7

7

3

5

1

SQRT(2)C3

SQRT(2)C1

SUBSAMPLED BLOCKS

OF SIZES 4X{1,2,4,8}

FOR

SUBSAMPLED BLOCKS

OF SIZES 2X{1,2,4,8}

Figure 1. SFG for LLM algorithm.

As can be seen from Fig.1, for subsampled blocks of
sizes 4x(1,2,4,8), we perform only the upper half compu-
tation(as indicated by the dashed line box) and for subsam-
pled blocks of sizes 2x(1,2,4,8) we perform only the up-
per quarter computation(as indicated by the solid-line box).
This is because the other coefficients are zero. By exploiting
this property, we achieve excellent scalability in the latency
and a higher throughput for sub-sampled blocks.

Table 1. Fixed Point Performance of LLM,
PPE=Pixel Peak Error, PMSE=Pixel Mean Sq. Error,
OMSE=Overall Mean Sq. Error, PME=Pixel Mean
Error, OME=Overall Mean Error

Measure Threshold Error for data Error for data Error for data

for IDCT range -256:255 range -5:5 range -300:300

PPE 1 1 1 1

PMSE 0.060 0.018 0.018 0.016

OMSE 0.020 0.015 0.015 0.013

PME 0.015 0.003 0.004 0.003

OME 0.0015 -0.0002 0.0001 0.0002

We use the following three techniques to reduce fixed
point errors, prevent overflow and conform to the required
accuracy within a 16 bit data path. Firstly, we modify the
original signal flow graph in [8] and place the

√
2 factors,

as shown in the signal flow graph in Fig.1. By modifying
the original signal flow graph, such that there is no multi-
plication by a constant greater than 1, no overflow occurs
at any intermediate stage, and so we avoid downscaling of
data which could introduce a loss of accuracy. Secondly,
we use 12 bit signed input for forward DCT, 16 bit signed
input for Inverse DCT and 16 bit unsigned cosine constants.
Thirdly we use a high precision rotator with an internal 32
bit adder, as explained in the next section. We performed C
simulations to determine the fixed point performance of our
solution approach based on the LLM algorithm. The results
are as shown in Table.1 for three ranges of data as specified
in CCITT [10].

3 Design of 2D DCT/IDCT processor

We obtain a worst case estimate of the speed at which the
DCT/IDCT Processor should work to satisfy the require-
ments of dual stream HD MPEG-2 decoding. In the 1080i
high definition format, the picture is 1920 x 1080 pixels,
sent at 30 complete frames per second. A Macro Block is of
size 16 x 16 pixels. The number of Macro Blocks per frame
is thus 1920X1080

28 which is approximately 8K macroblocks
per frame. Assuming 4:2:0 format 8K macroblocks = 8K x
6 = 48K blocks/frame. At 30 frames per second, this trans-
lates to 48K x 30 which is approximately 1.5M blocks/sec.
At 150 MHz as specified in CCITT [10], it means that the
DCT/IDCT Co processor gets, for a dual HD stream

150MHz
2X1.5Mblocks/sec = 50 cycles per block of data.

3.1 Design methodology

We briefly explain the behavioural synthesis method-
ology based on which we design the processor core and

0-7695-1868-0/03/$17.00 (C) 2003 IEEE

achieve the support for scaled and sub-sampled blocks. The
A|RT Designer tool [9], which we use for the design of our
processor core, takes as input the behavioural description
of the algorithm in a subset of C, and generates a RT level
synthesisable HDL model of the application specific VLIW
processor. The classical design flow steps begins with the
compilation of the source code inclusive of identifying and
accurately representing the parallelism present in the source
program. This is followed by creation of an architecture and
mapping the source code data flow to the architecture. Re-
moval of redundant hardware, scheduling of the operations
and finally generating the microcode control ROM and RT
level synthesisable HDL model completes the design flow
steps shown in Fig.2.

VERILOG

C

SOURCE
EDIT/COMPILE

DEFAULT
LIBRARY

USER
LIBRARY

CREATE
ARCHITECTURE

MAP TO
ARCHITECTURE

PRAGMAPRAGMA

PRAGMA

BUILD RT

LEVEL

PRAGMA

SCHEDULE
OPERATIONS

VHDL

CYCLE
TRUE C

Figure 2. A|RT design flow steps.

In addition to the default library present in the tool
framework (consisting of ALU, MAC, Multiplier etc), the
designer can describe a custom library, where the resource
can be modelled as a black box with only the time shape
of the inputs and outputs described. The detailed HDL or
cycle true C model of the custom components needs to be
provided only before the RT model of the processor is built.
The mapping of the operations to the type of functional unit
is done by the designer during the mapping to architecture
phase. The schedule step generates the total cycle count
for the particular combination of resources and mapping.
The A|RT tool generates the VLIW controller (consisting
of micro code ROM, status and branch logic blocks, pro-
gram counter), register files and multiplexers. The inputs
of the controller are the status flags generated in the data
path as well as a reset, initialise, and start up signal gener-
ated by the external hardware. The controller uses them to
determine which instructions to execute next.

3.2 Design of computational core

The butterfly operation in Fig.1 translates to two addi-
tions in terms of effort. The butterfly is modelled as a single
cycle resource. It takes two 16 bits normalised signed in-
puts and produces two 16 bits normalised signed outputs,
one being the sum of the two inputs, the other being the
difference.

The rotation operation is a dual output one. It is imple-
mented using two single output resources as shown in Fig.3.

HIGH PRECISION(HP) ROTATORS

MULTIPLY

MULTIPLY

MULTIPLY

MULTIPLY

ADD

ADD

ROUND

ROUND

A

COS(N)

COS(N)

B

SIN(N)

SIN(N)

A

−B

C

D

32

32

32

32

32

32

16

16

MULTIPLY

MULTIPLY

MULTIPLY

MULTIPLY

A

COS(N)

COS(N)

B

SIN(N)

SIN(N)

A

−B

C

D

ROUND ADD

ROUND ADD

32

32

32

32

16

16

16

16

16

16

LOW PRECISION(LP) ROTATORS

Figure 3. Block diagram of LP and HP rotators.

Table 2. Fixed Point Performance for FDCT with HP
and LP rotator.

Measure Data range Data range Data range

(-256:255) (-5:5) (-300:300)

HP, LP HP, LP HP, LP

PPE 1, 1 1, 1 1, 1

PMSE 0.126, 0.146 0.122, 0.148 0.124, 0.149

OMSE 0.101, 0.114 0.100, 0.119 0.101, 0.122

PME 0.009, 0.012 0.009, 0.013 0.009, 0.010

OME 0.0006, 0.0001 0.0002, 0.0002 0.0004, 0.0007

The rotator is a two cycle pipelined resource. It consists of
a multiplication followed by an addition and rounding stage
as shown in Fig.3. The rotator can be designed as a high
precision (HP) rotator or a low precision (LP) rotator. The
low precision version, has a multiplication stage followed
by rounding and 16 bit addition. The high precision ver-
sion, has a multiplication stage followed by 32 bit addition
and rounding.

Table.2 shows the improved accuracy achieved in HP ro-
tator by rounding after the 32 bit addition and thereby re-
ducing the frequency of the last bit in error. Table.2 only
shows the fixed point simulations for the forward DCT,
since the accuracy for inverse DCT is acceptable with both
the LP and HP rotators. It can be seen from Table.2 that for
the forward DCT, using a LP rotator, the mean square er-
rors are significantly higher than when a HP rotator is used.
Since the 32 bit output from the adder is rounded by the
rounding unit to produce a 16 bit output, the external in-
terface remains at 16 bits. If a lower accuracy version can
be tolerated, LP rotators can be used. Throughout this dis-
cussion, when we say rotator, we refer to the single output
resource, as shown in the upper half or lower half of the
block diagram for high precision (HP) rotators. So, a rota-
tion operation is performed by two single output rotators.

Any good logic synthesis tool would produce a compact
multiplier when either of the inputs to the multiplier is a
constant (resulting in a hardwired, constant coefficient mul-
tiplier) [11]. In our implementation, we re-use the constants
of the same precision for both FDCT and IDCT and thus
re-use the compact rotator blocks for both the forward and
inverse operations. From the LLM signal flow graph it can

0-7695-1868-0/03/$17.00 (C) 2003 IEEE

be seen that there are 3 Rotation operations, each with a dif-
ferent constant and 2 multiplications with 1/

√
2 (which can

be considered as a rotation by 45 degrees with one of the
inputs to the rotator being zero).

The Logic Unit (LU) is a single cycle combinational unit
which needs the following inputs
(a) Scale/No Scale
(b) Number of rows in input block
(c) Horizontal Scale Factor (HSF)
(d) Vertical Scale Factor (VSF)
(e) Fdct or Idct. The logic unit produces twenty, 1 bit out-
puts, in 1 cycle, each output indicating a particular control
condition. The presence of the logic unit eliminates the
overhead for control condition checks.

The Round and Saturation unit is a single cycle unit. It
gets eight, 16 bit numbers as inputs. It is a multi mode re-
source. In the FDCT case, it produces eight, 12 bit rounded
and saturated outputs. In the IDCT case, it produces eight,
9 bit rounded and saturated outputs. In the design of this
processor all the intermediate values are stored in registers
and the design of a transposition memory is avoided.

3.3 Scaled and sub-sampled block support

The scalability in performance is achieved by avoiding
redundant calculations. For eg., bit 2 output of the LU indi-
cates that the input block is vertically subsampled by 2 and
is of size 8x4, bit 17 indicates that the input block is scaled
and is of size 4x8 etc. In a vertically subsampled block of
size 8x4, only the even elements are non zero and thus the
odd half of the IDCT flow graph can be bypassed (in ef-
fect performing a 4 point IDCT). In a scaled 4x8 block, we
perform only 4 row-wise and 8 column-wise transforms.

3.4 Design space explorations

In the A|RT design methodology, the user has to manu-
ally map the operations to the resources. The number of re-
sources of each type also needs to be decided by the user. To
determine the number of resources of each type a good area-
time tradeoff point needs to be found. We experimented
with various combinations of general purpose and custom
resources. The general purpose resources are available to
the designer in the default library of the tool. For the cus-
tom resources, the designer needs to define the time shape
of the inputs and the outputs.

General purpose/custom units can be used for perform-
ing the data path operations. For eg., the butterfly consists
of one addition and one subtraction operation. It can be
implemented by mapping these operations to the arithmetic
and logic units (ALUs) present in the default library. To per-
form the addition and subtraction in parallel, each butterfly
has to be mapped onto two ALUs. This mapping for each

of the butterfly operations has to be done manually in A|RT,
which is a bit tricky, since a bad mapping could result in a
bad schedule and cycle overheads. The mapping is much
simpler when we use custom units for the operation, since
there is a direct correspondence between the operation and
the functionality of the custom unit. We evaluated the cycle
and regfile size overhead for each combination of general
purpose and custom units. This is illustrated in Fig.4. Ap-

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

11 2 13

65

60

55

50

45

40

35

C
Y

C
LE

 C
O

U
N

T

3 4 5 6 7 8 9 10 11 12

8

6

4

2

2 3 4 5 6 7 8 9 10 11 1312

COMBINATION USED COMBINATION USED

R
E

G
F

IL
E

 S
IZ

E
(K

B
IT

S
)

COMBINATION USED

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�� �
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

1 2 3 4 5 6 7 8 9 10 11 12 13

ALU (USED FOR ADDITION

AND LOGIC)

ROTATOR

BUTTERFLY

CUSTOM LOGIC UNIT

ALU(ONLY FOR ADDITION)

2

4

6

8

10

12

14

16

18

20

N
U

M
B

E
R

 O
F

 R
E

S
O

U
R

C
E

S

Figure 4. Cycle Count for various combinations of
resources.

proach 1 with 20 ALUs, 8 rotators, 1 custom logic unit has
the best cycle count of 38, but the area overhead is high.
The register file size is 3.8 kbits. Approach 2 with 10 But-
terflies, 8 rotators, 1 custom logic unit has a cycle count of
41 and a register file size of 3 kbits. In Approach 11, we
map the logic operation of the control condition check and
addition of the butterfly to the same ALU, and observe the
cycle count and register file size. In some of the approaches,
we use dedicated ALUs for addition (i.e. logic operations
are not mapped on the same ALU).

We conclude that Approach 2 is promising and provides
the most optimal area-cycle count trade off point. In Fig.4
we do not show the rounding and saturation unit, input and
output ports which are common to all the approaches. We
use 1 rounding and saturation unit and 8 input ports and
8 output ports in all the approaches. We next, experiment
with different kinds of input and output ports. In the A|RT
design flow, the designer has an option of choosing address-
able or non-addressable ports. The former reads data from
and writes data to a RAM (assuming all the input data is
readily available), while the latter communicates with the
external world through handshake signals [9]. The input
and output ports used for obtaining the cycle count figures
in Fig.4 referred to the addressable variety.

Table.3 shows the cycle count and register file sizes for
input and output ports of the non-addressable variety. From
the table it is clear that non-addressable inports and outports
are preferable. The regfile size and cycle counts are larger
when using addressable ports because of the overhead in

0-7695-1868-0/03/$17.00 (C) 2003 IEEE

Table 3. Addressable and Non-addressable ports
comparison

Type of port Regfile(Kbits) Cycle count

Addressable 3.454 41

Non-addressable 2.872 38

generating the address values for data to be read from the
external RAM.

Table 4. Scheduling algorithms comparison
Type Regfile(Kbits) Cycle count

All 2.872 38

Asap 3.688 43

Alap 2.792 38

Alap Greedy 2.776 38

Table.4 depicts the various scheduling algorithms and
their effects on regfile sizes and cycle counts. Depending
on the scheduling algorithm chosen, the register life time
can vary, and the size of the register file can change. For
instance, the table clearly shows that the ASAP scheduling
algorithm increases the register life time in our application.
We choose the ALAP Greedy scheduling algorithm since it
has the best cycle count, regfile file size combination. The
final block diagram of the processor is as shown in Fig.5.

LOGIC

UNIT
SAT UNIT

ROT1 ROT8

MICRO CODE ROM

8 INPUT PORTS 8 OUTPUT PORTS

REGISTER FILES

MULTIPLEXERS

INTERCONNECT NETWORK

BF1 BF10
ROUND

Figure 5. Final block diagram

3.5 Pipelining and interfacing to external hard-
ware

The rotator is internally pipelined as explained in section
3.2. The DCT/IDCT processor has a four stage pipeline as
shown in the left half of the Fig.6 where each stage refers
to a stage in the flow graph in Fig.1 and has a latency of
two. The next block of data can be read in only after the
latency as shown in Fig.7. This is because a common data
path has been used for computing the row wise and column
wise transform. The row-wise transform for the next block

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
���

�
�
�
�
�
�

�
�
�
�
�
�
�

����������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

����������

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��

������INTO PROC

READ WRITE

FROM PROC

COMPUTE

38 CYCLES

READ FROM EXTERNAL MEMORYPR 4
FOR NEXT BLOCK CAN BEGIN HERE

READ FROM

EXTERNAL MEMORY EXTERNAL MEMORY

READ NEXT BLOCK FROM

COMPUTATION COMPUTATION

EXTERNAL MEMORY

WRITE TO

STAGE1 STAGE2 STAGE3 STAGE4

PR = PIPELINE REG

PR 1 PR 2 PR 3

Figure 6. Pipelining of Read-Compute-Write phases.

cannot begin until the column-wise transform for the previ-
ous block is completed. For example, the data introduction
interval is 26 cycles for an 8x2 subsampled block and 38
cycles for a 8x8 block (Fig.7).

The processor communicates with the external world
through handshake signals [9]. All the cycle counts men-
tioned so far indicate the time taken for computing the for-
ward or inverse DCT assuming the input data is available at
the input port as soon as it is needed and the output data can
be drained from the output port as soon as it becomes avail-
able. This is far from true in a realistic situation. If the input
data is not available the processor will stall until it becomes
available [9]. Similarly, if the data at the output ports is not
drained immediately, the processor will stall again [9]. To
reduce the frequency of stalls, the input and output data can
be buffered external to the processor. The depth of the FIFO
buffers will depend on the external read and write latency.
With the introduction of such buffers, the read from exter-
nal memory, computation and write to external memory can
work in a pipeline as shown in the right half of Fig.6.

4 Results

The VLIW FDCT/IDCT processor shows good scaling
in its performance. This is illustrated in Fig. 7. For ex-
ample, the processor works in 24 cycles for a subsampled
block of size 4x4, in 18 cycles for 2x4 etc.

4.1 Comparison with previous architectures

Table.5 compares the previous designs after scaling them
to the technology used in the current design. The table
clearly shows that only the proposed design fully supports
scaled and sub-sampled blocks. The delay figures of the
proposed design vary from 0.046 to 0.253µs. Thus for sub-
sampled and scaled blocks, the proposed design is faster
than all the existing architectures. The design proposed in
[6] can be scaled in the sense that it can be adapted for
higher throughput by adding data path units in parallel with
a consequent increase in area. But with a fixed architecture,
it is not scalable. The architecture proposed in [7] is par-

0-7695-1868-0/03/$17.00 (C) 2003 IEEE

4

8

12

16

20

24

28

32

36

40

(SCALED BLOCKS)44

FD
C

T

1X
8

2X
8

4X
8

8X
8

4X
8

2X
8

1X
8

8X
4

4X
4

2X
4

1X
4

4X
2

8X
2

2X
2

1X
2

8X
1

4X
1

2X
1

1X
1

BLOCK SIZES

CYCLE
COUNT

SUBSAMPLED BLOCKS

NON−SUBSAMPLED BLOCKS

Figure 7. Scaling performance of processor.

tially scalable and is very compact. It can operate on 8x8
blocks or 2x4x8 blocks. Their proposed architecture is op-
timised for the digital VCR domain and does not meet the
higher accuracy requirements of CCITT. (For e.g., the mean
square error should be ≤ 0.083 for IDCT in the digital VCR
domain, whereas the mean square error required by CCITT
is ≤ 0.020.) If the accuracy requirements of CCITT need
to be met by the architecture in [7], it would no longer be
as compact. Hence, the proposed architecture is superior in
its higher accuracy and support for sub-sampled and scaled
blocks and offers significant advantages in comparison with
the existing designs.

Table 5. Comparison after scaling to 0.18µ CMOS
technology

Method Latency(cycles) Area(mm2 Delay = latency/Freq.(µs)

[1]∗∗ 24 3.57 0.108

[2]∗ 128 1.0692 0.288

[3]∗ 135 0.588 0.2209

[5]∗ 72 5.4 0.216

[7]∗ 1208(fdct) 0.072 10.98(fdct)

1192(idct) 10.84(fdct)

[8]∗+ 54-108 0.196 0.1335 (4x8)

0.267(8x8)

Ours∗++ 7-38 0.834 0.046 - 0.253
∗∗ IDCT only ∗ FDCT and IDCT

∗+ FDCT and IDCT and partial support for scaled blocks
∗++ FDCT and IDCT and full support for scaled and sub-sampled blocks

5 Conclusion

This paper showed the design of a fully scalable
FDCT/IDCT VLIW processor. The core fully satisfies the
accuracy requirements specified in CCITT. The processor
can handle the high speed requirements of dual stream HD

decoding. The presence of input data dependant control re-
sults in an excellent scaling performance of the processor.

Such multi-functional hardware ensures that the proces-
sor can find extensive use in applications where both for-
ward and inverse DCT need to be performed (Eg. where
both encoders and decoders are present locally). The pro-
posed design offers specific advantages among others, in
MPEG-2 decoders where scaled blocks can arise, in HDTV
decoders where sub-sampled blocks can arise since there is
a need to handle the Picture in Picture(PIP) functionality,
and also in HD to SD down conversion in set top boxes. By
working at a reduced latency for scaled and sub-sampled
blocks, the proposed processor core can speed up MPEG-2
decoding.

The paper also discusses how the effects of each design
decision on area and cycle time were analysed to arrive
at the final optimal architecture. The comparison with the
existing architectures shows that the proposed design is
superior and offers many advantages.

References

[1] P. A. Ruetz et al., ”A 160 Mpixels/s IDCT processor for
HDTV”, IEEE Micro, pp. 28-32, 1991.

[2] Uramoto et al., ”A 100 Mhz 2-D Discrete Cosine Transform
Core Processor”, IEEE Journal of Solid State Circuits, Vol.
27, No. 4, pp. 492-499, Apr 1992.

[3] W. Li et al., ”A high speed 2-D DCT/IDCT processor”,
IEEE Intl. Symposium On Circuits And Systems, Vol. 1, pp.
192-195, 1991.

[4] V. Srinivasan et al., ”VLSI Design of high speed time recur-
sive 2D DCT/IDCT processor for video applications”, IEEE
Transaction On Circuits And Systems For Video Tech., Vol.
6, No. 1, pp. 87-96, Feb, 1996.

[5] H. Lim et al., ”A Serial Parallel architecture for 2D DCT
and IDCT”, IEEE Transaction On Computer, Vol. 49, No.
12, pp. 1297-1309, Dec, 2000.

[6] T. Chang et al., ”A simple processor core design for
DCT/IDCT”, IEEE Transaction On Circuits And Systems
For Video Tech., Vol. 10, No. 3, pp. 439-447, Apr, 2000.

[7] S. K. Paek et al., ”A mode changeable 2D DCT/IDCT pro-
cessor for digital VCR”, IEEE Transaction On Consumer
Electronics, Vol. 42, No. 3, pp. 606-616, Aug, 1996.

[8] C. Loeffler et al., ”Practical Fast 1-D DCT Algorithms with
11 multiplications”, Intl. Conf. On Acoustics, Speech and
Signal Processing, ICASSP, pp. 988-991, May, 1989.

[9] ART Designer Reference manual, Frontier Design, v2.3
rev15, Apr, 2001. www.adelantetechnologies.com.

[10] CCITT SGXV Working Party XV/1 Specialists Group On
Coding For Visual Telephony, Document 584, Nov., 1989.

[11] K. E. Wires et al. ”Combined Unsigned and Two’s Com-
plement Squarers”, Proc. of the 33 Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, California,
pp. 1215-1219, Oct, 1999.

[12] K. R. Rao and P. Yip ”Discrete Cosine Transform : algo-
rithms, advantages, applications”. Academic Press, 1990.

0-7695-1868-0/03/$17.00 (C) 2003 IEEE

	VLSI Design 2003
	Return to Main Menu

