
IEEE Design and Test of Computers
Special issue on Embedded Processor Based Designs,

Ed.: Peter Marwedel, July-August 2002

Abstract
Eclipse defines a heterogeneous multiprocessor architecture template for data-dependent

stream processing. Intended as a scalable and flexible subsystem of forthcoming media-processing
systems-on-a-chip, Eclipse combines application configuration flexibility with the efficiency of
function-specific hardware, or ‘coprocessors’. The multi-tasking coprocessors concurrently exe-
cute application tasks of one or more applications. To facilitate reuse, Eclipse separates coproces-
sor functionality from generic support, implemented by ‘shells’, attached to each coprocessor. The
shells offer multi-tasking, inter-task synchronization, and data transport services to the coproces-
sors. This facilitates the design of coprocessors that require complex control to handle e.g. data-
dependent I/O and saving/restoring task state. This paper presents the Eclipse architecture tem-
plate as well as a first instantiation with coprocessors that support simultaneous MPEG-2 encod-
ing and decoding.

1. Introduction

The advent of new media applications demands an increasing flexibility of consumer electronics
products. These media applications include high-definition digital television, a set-top box with
time-shift functionality, 3D games, video conferencing, or MPEG-4 like interactivity. Consumer
electronics products are evolving into multi-functional devices that combine a set of such applica-
tions. The required set of applications and their format varies per product, per country, and over
time as standards evolve. To accommodate these continuously changing requirements, complex
consumer appliances are based on programmable architectures. As the development of a program-
mable architecture requires generic solutions for the complete application domain, the develop-
ment cost of programmable architectures is significantly higher than the development cost for a
function-specific architecture. However, once the flexible architecture with associated software-
development environment is available, the time to market of a new software-based appliance can
be very fast.

Managing complexity, design cost, and time-to-market of such programmable resource-
constrained appliances requires a generic and scalable media processing platform that can be de-
ployed in a wide range of products. Currently, several vendors are entering the market with plat-
forms that address these issues to some extent [3][12]. Philips Electronics has been developing
such a platform concept with instances such as the Viper [3]. Such System-on-Chip (SoC) solu-
tions typically consist of a heterogeneous mix of fully programmable processors (e.g. MIPS, ARM,
TriMedia VLIW) and coarse-grain application-specific subsystems (e.g. MPEG decoders, video
filters). The application-specific subsystems are optimized for high performance with minimal
power consumption and silicon area. Currently, these are dedicated for a single application and the
hardware cannot be reused for other applications within the same application domain. Therefore,

† Evert-Jan Pol is currently with Philips Semiconductors, Eindhoven, The Netherlands.

Eclipse: A Heterogeneous Multiprocessor Architecture for Flexible Media
Processing

Martijn J. Rutten, Jos T.J. van Eijndhoven, Evert-Jan D. Pol†

Egbert G.T. Jaspers, Pieter van der Wolf, Om Prakash Gangwal, Adwin Timmer
Philips Research Laboratories

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
{martijn.rutten, jos.van.eijndhoven}@philips.com

2

even though the generic platform with its interconnect structure may be reused over various gen-
erations, a change in application requirements implies redesign of the application-specific subsys-
tems. These subsystems take up a large part of the total design effort and silicon cost.

Eclipse is a template architecture for the design of versatile media-processing SoC subsystems.
Instances of the Eclipse template are heterogeneous subsystems containing a mix of programmable
and hardwired functions. Eclipse instances combine the performance density of function-specific
hardwired modules, or coprocessors, with the flexibility of one or more programmable cores.
These are linked into a network that resembles the application structure. The network configuration
is programmable and set up in software.

Section 2 discusses the main architectural trade-offs that influence the design of Eclipse like
media-processing architectures. This section serves as a rationale for the introduction of the
Eclipse architecture template in Sections 3 through 5. In Section 6, we show a first instance of the
Eclipse template that we used to validate the concepts outlined in this paper. Section 7 concludes
with simulation results.

2. Design aspects of media-processing architectures

In the consumer-electronics domain, media-processing applications execute on resource-
constrained systems. The performance, flexibility, and cost effectiveness of such resource-
constrained systems are highly interrelated. The following subsections elaborate on the main archi-
tectural trade-offs that influence these parameters and provide the foundation for the design
choices of the Eclipse architecture template.

2.1. Parallelism and flexibility

In the field of consumer electronics, design constraints, such as cost, power consumption, per-
formance, and flexibility, are weighted differently than in the PC-market. Consumer media proces-
sors require an order of magnitude lower cost prize in combination with a significantly higher
performance for the media-processing application domain. The key challenge is to design a media-
processing architecture that meets the demand of high performance with a low power consumption
and silicon cost.

medium-grain task

coarse-grain task

media-processing application

Figure 1. Granularity of parallelism in media-processing applications.

Media-processing applications typically exhibit parallelism at various levels of granularity
(Figure 1). For instance, a time-shift recorder function consists of an encoding and decoding func-
tion which may be executed in parallel. Moreover, within the decoding function there are many
medium-grain tasks that can execute in parallel, e.g. the discrete-cosine transform (DCT) and
quantization tasks (Figure 2). Within such a DCT task, many operations can execute in parallel.

The parallelism is made explicit by specifying media-processing applications as a set of concur-
rently executing tasks that exchange information solely by unidirectional streams of data. A di-

3

rected graph with a node for each task and an edge for each data stream represents the structure of
the application. Kahn [8] introduced a formal model of such applications already in 1974, followed
by an operational description by Kahn and MacQueen [9] in 1977. This formal model is now
commonly referred to as the Kahn Process Network (KPN) model of computation, and defines the
model of computation of the Eclipse architecture.

+

Motion
compensation

Motion
compensation

Inverse zig-zag
scan

Inverse zig-zag
scan

Run-length
decoding

Run-length
decoding

Variable length
decoding

Variable length
decoding

Inverse
quantization

Inverse
quantization

Inverse
DCT

Inverse
DCT

9LGHR03(*��%LWVWUHDP

SaturateSaturate

Reference
frames

Reference
frames

Figure 2. MPEG-2 decoder process network.

Figure 2 shows such a network for MPEG-2 video decoding. The data streams in the network
are buffered. Each buffer is a FIFO, with precisely one producer and one or more consumers.
Reading from a stream with insufficient data available causes a consuming task to stall. Kahn for-
mally proved that such a system has a well-defined unique behavior. In particular, the functional
behavior—observed as the sequence of data items that traverse the edges—is independent of the
order in which the tasks are executed.

One of the nice features of the Kahn model is its inherent building-block nature. Once a set of
basic functions has been defined as tasks, a multitude of applications can be configured by instan-
tiating tasks and connecting them in a graph structure. Describing an application in these generic
tasks is then followed by a mapping phase in which the system designer decides which modules in
the architecture execute which tasks. For this mapping to make sense, the granularity of Kahn tasks
must match the granularity of the architecture modules. The resulting solution is highly flexible if
the building-block nature of the tasks is matched by a similar building-block nature of the modules,
complemented by a generic infrastructure that allows run-time instantiation of task graphs.

For instance, complex media-processing SoCs exploit the performance density of sophisticated
application-specific subsystems to implement critical parts of the targeted media applications,
while endowing the system with a sufficient level of flexibility by embedding programmable cores.
These subsystems execute concurrently to exploit task-level parallelism at a coarse granularity.
Typical subsystem examples are a dedicated MPEG decoder, respectively a programmable embed-
ded core. Such a heterogeneous mix of hardware and software is essential for a cost-effective yet
flexible architecture. The subsystems implement the functions that the SoC needs to perform,
while the SoC infrastructure takes care of the data communication between subsystems. Even
though the subsystems may only be weakly programmable, the flexibility of the infrastructure to
route data to and from different subsystems plays an important role in the flexibility of configuring
different applications on the SoC.

For competitive consumer media-processing architectures, performance is maximized by
exploiting parallelism wherever possible, while cost is minimized by introducing flexibility only
where necessary. As noted in the introduction, state-of-the-art SoC subsystems have a coarse
granularity, which renders them inflexible, e.g. an MEPG-2 decoder block cannot be reused for an
MPEG-2 encoding application even though an MPEG-2 encoder embeds a large portion of an
MPEG-2 decoder. In order to introduce flexibility of configuring applications on such SoC subsys-
tems, the subsystem must support the mapping of medium-grain application tasks on internal func-

4

tion modules of corresponding granularity. Therefore, Eclipse introduces a programmable infra-
structure that supports concurrent execution of medium-grain functions in a heterogeneous mix of
software and reusable coprocessors.

2.2. Tightness of coupling

Hardware modules communicate data through communication buffers. The size of these buffers
determines in how far the producer and consumer are coupled in the timing of their execution. The
coupling of timing is determined by the regularity of processing in the application domain and the
admissible amount of stalling behavior that sacrifices parallelism. For instance, regular tasks, such
as in linear video filtering where worst-case communication requirements equal the average case,
allow a tight coupling with minimal buffering [2][7]. Irregular tasks demand less tight coupling to
allow individual progress of tasks, leading to larger buffer requirements. A typical irregular, data-
dependent task is the variable-length decoder (VLD) in MPEG decoding where the quantity of in-
put and output data can vary wildly per stream or even within a picture of a single stream. A less
obvious example is the DCT function; the function itself is regular, but the number of DCT coded
blocks to be processed varies per MPEG frame. Eclipse targets the application domain of video
encoding and decoding, which exhibits a large amount of data-dependency, resulting in a high de-
gree of irregularity. In practice, the ratio of worst-case versus average load can be as high as a fac-
tor of 10. Consequently, we have designed Eclipse to be a relatively loosely coupled system.

Communication requires both data transport and synchronization. Data transport refers to mov-
ing data into and out of communication buffers. Producers and consumers exchange information
on the amount of produced or consumed data in the buffer that is available for consumption or
production, respectively. We refer to this exchange of information as synchronization. Due to the
FIFO buffering, the producer and consumer do not need to mutually synchronize individual read
and write actions on the stream. Thus, synchronization granularity can be chosen independently.
For instance, each individual data access can be synchronized, i.e. at the granularity of data trans-
port, or synchronization can be closer related to the logical unit of input and output data on which a
task operates, e.g. the granularity of a picture for an MPEG decoding task.

Decreasing the granularity of the application functions (e.g. from an MPEG-decoder function to
a DCT function) to enhance parallelism and reuse introduces two issues. As the number of streams
passing through the communication network increase, both communication buffering and band-
width requirements increase. Eclipse reduces communication buffer requirements by changing the
grain of synchronization to a finer level (e.g. from picture to macroblock level in MPEG). The re-
sulting small communication buffers can be kept on-chip, allowing deployment of a dedicated
communication network to cope with the high bandwidth requirements.

2.3. Scalability and separation of concerns

Reuse is crucial to keep the design cost of consumer devices at an acceptable level. Scalability
is needed to implement reuse over generations of an architecture. Architecture templates are essen-
tial in supporting scalability by providing a set of parameterized rules for the composition of a
(sub)system. Examples of template parameters are memory size, bus width, number and type of
(co)processors, etc. Architecture templates have been widely deployed at SoC level [3][17][18].
However, subsystem-level templates are relatively unknown. Eclipse provides such a scalable ar-
chitecture template at subsystem level (Section 3).

A key ingredient of such an architecture template is the infrastructure around the function mod-
ules, e.g. for routing data to and from communication buffers. The programmable infrastructure
must be able to grow with the advance of IC technology, while reusing its function modules.
Moreover, the infrastructure should be reusable over a varying number and type of function mod-

5

ules. Such scalability is generally accomplished by introducing a stable interface that separates the
design of the function modules from the infrastructure and vice versa. Eclipse separates computa-
tion (CPU, coprocessors) from generic infrastructure through the task-level interface (Section 3.2).

A second aspect of scalability of an architecture is the autonomy of the function modules. Scal-
able architectures typically avoid complex centralized modules that control large parts of the archi-
tecture. For example, a coprocessor architecture where a single CPU synchronizes all coprocessors
is not scalable as the interrupt rate will overload the CPU with an increasing number of coproces-
sors. In a more scalable solution, every coprocessor may control its own behavior without needing
CPU support [4]. Thereto, all Eclipse coprocessors execute autonomously, without requiring CPU
support for task scheduling or synchronizing access to the stream buffers. Thus, time-shared use of
the coprocessors does not rely on run-time control by CPU software.

3. Eclipse architecture template

Eclipse exploits application-level parallelism by concurrently executing medium-grain functions
in function-specific coprocessors and/or software executing on a media processor. Functions eligi-
ble for coprocessor implementation are those commonly encountered in media applications, such
as the DCT transform used by decoders and encoders for e.g. JPEG, MPEG, and DV. Typically,
the functions eligible for software implementation are specific for one application only—such as
still-texture decoding in MPEG-4—or are likely to change as standards evolve. These medium-
grain functions are linked at run-time into a Kahn-style application graph, using on-chip communi-
cation and data buffering. Figure 3 depicts how application tasks are mapped onto the coprocessors
and/or software. Eclipse applications are specified as a set of tasks that communicate with each
other through data streams with FIFO buffers allocated in shared on-chip memory. A stream con-
nects the output port of a producing task and the input port of one or more consuming tasks. Con-
trary to fully hardwired SoC subsystems, the Eclipse infrastructure is programmable and provides
the flexibility of configuring a given Eclipse instantiation for different applications graphs.

7DVN
$

7DVN
%

7DVN
&

6WUHDP ,QSXW�SRUW2XWSXW�SRUW

&RSURF�Q
'63
&38

&RPPXQLFDWLRQ
	�0HPRU\

$SSOLFDWLRQ

$UFKLWHFWXUH

0DSSLQJ

. . .&RSURF��

7DVN
'

Figure 3. Application to architecture mapping example.

Eclipse coprocessors exploit the performance density of dedicated hardware function units and
are only weakly programmable. All coprocessors run in parallel and execute their own thread of
control. The coprocessors are multi-tasking to enhance the flexibility of configuring applications
on Eclipse instances, i.e. each coprocessor can execute multiple Kahn tasks from a single Kahn
network or from multiple and possibly different networks in a time-shared fashion. This way, ap-
plication complexity is not restricted to the number of coprocessors in the architecture. Moreover,
the programmable media processor can perform part of the application functionality whenever an
application requires functionality beyond the implemented set of coprocessors.

6

The strong requirements on flexibility led us to design the Eclipse infrastructure with a central-
ized memory module where communication buffers can be allocated at run-time. For media proc-
essing, the streaming nature of the application functions gives a high spatial locality of reference.
Eclipse instances exploit this to provide high data throughput (Gbytes per second) through de-
ployment of a shared wide (e.g. 128 bits) bus in combination with communication buffers in a cen-
tralized, wide on-chip memory. The high synchronization rate is supported by a dedicated
hardware implementation in the coprocessor shell.

3.1. Coprocessor shell

The communication network to transport and synchronize data between coprocessors may
change over instances to match communication bandwidth requirements. Eclipse introduces the
coprocessor shell to facilitate reuse of coprocessor designs over different Eclipse instances with
different communication network characteristics [15]. The shell alleviates coprocessor design by
absorbing many system-level issues, such as multi-tasking, stream synchronization, and data trans-
port. Thus, coprocessor designers can concentrate on application functionality.

The shells implement a uniform set of interface primitives towards the coprocessor with co-
processor-specific parameters, such as the width of the data path. While having such a customized
interface towards the coprocessor, the shells have a uniform interface towards the communication
hardware. This way, the shells allow reuse of coprocessor designs over different Eclipse instances
with different communication network characteristics. Moreover, the architecture of the shell itself
is designed as a parameterized template to facilitate reuse within an Eclipse instance. Shell in-
stances with coprocessor-specific parameter settings are derived from this generic template. Exam-
ples of such parameters are the data width of the read and write interface between coprocessor and
shell, or the size of data caches in the shell.

&RPPXQLFDWLRQ

*HQHULF�VXSSRUW

&RPSXWDWLRQCoprocessorCoprocessorCPU

Shell-HW Shell-HWShell-SW
Shell-HW

WDVN�OHYHO���LQWHUIDFH

FRPPXQLFDWLRQ����LQWHUIDFH
Communication network

Memory

Figure 4. Coprocessor shell for system-level support.

Figure 4 depicts this hardware interface block that separates the computation hardware (coproc-
essors) from the communication hardware (buses, memory). The shells are distributed, such that
each shell can be instantiated close to the coprocessor that it serves. While this article focuses on
the coprocessor shell, the described concepts are directly applicable for the shell of the media
processor. The media processor shell may implement parts of its functionality in software to in-
crease flexibility and reduce hardware cost.

3.2. Task-level interface

Each coprocessor interacts with its shell through five generic interface primitives [14]. While
specified in the form of software functions, Eclipse implements these primitives in hardware with
an identical interface: a master-slave handshake with corresponding argument and result passing.

7

Figure 4 represents this as the task-level interface between coprocessors and their shells. For multi-
tasking, the coprocessor issues the following primitive:
 int GetTask(int *task_info).

The coprocessor calls this primitive whenever it allows a task switch to another task mapped on
the coprocessor. The return value is the identifier of the next task (task_id) to execute on the co-
processor. The task_info value provides parameter values for the function the selected task
should perform, e.g. one bit to select whether a forward or inverse DCT is to be performed.

The primitives for accessing data in the stream buffer are:
 void Read(int task_id, int port_id, int offset,
 int n_bytes, Bytes *bytevector)

for reading a number of bytes from the data stream connected to an input port, and
 void Write(int task_id, int port_id, int offset,
 int n_bytes, const Bytes *bytevector)

for writing a number of bytes to a data stream connected to an output port.
Designs that adopt the Kahn model typically synchronize on each read or write action. Instead,

Eclipse advocates the separation of data I/O and synchronization. Kahn-style communication may
suffice for software tasks, but the separation of transport and synchronization is mandatory for de-
signing cost-effective hardware tasks, e.g. to reduce buffer requirements. The primitives for syn-
chronizing access to data in the stream buffer are:
 bool GetSpace(int task_id, int port_id, int n_bytes)

to inquire whether n_bytes valid bytes are available in the stream buffer for reading, or n_bytes
of room are available for writing in the stream buffer. After reading or writing, the PutSpace
primitive commits the number of consumed or produced bytes:
 void PutSpace(int task_id, int port_id, int n_bytes).

The n_bytes argument of GetSpace and PutSpace calls allows the coprocessor to synchronize
streams at a granularity and rate that differs from the individual Read and Write calls.

All task ports (Figure 3) map to one physical coprocessor-shell interface that handles Read,
Write, GetSpace/PutSpace, and GetTask requests in parallel. The coprocessor is responsible
for serializing simultaneous requests from different task ports. To discern between different
streams, the coprocessor passes an identifier of the active task port to the shell through the
port_id argument of the above primitives. The shell subsequently combines the task_id and
port_id arguments into an identifier of the associated stream for sending synchronization mes-
sages to a predecessor or successor task and to access the stream buffer in shared memory. Note
that while the GetSpace and PutSpace primitives do not distinguish between input and output
ports, a GetSpace on an input port inquires about available data for reading, whereas a GetSpace
on an output port inquires about available room for writing. Likewise, a PutSpace call on an in-
put port commits empty room available for writing, while a PutSpace call on an output port
commits valid data written in the stream buffer.

The use of the coprocessor-shell primitives and their arguments is subject of Section 4, while
Section 5 details the shell implementation. The coprocessor-shell primitives are generic and sim-
plify coprocessor design while supporting the design of coprocessors that require complex control
to cope with for instance data-dependent I/O, variable packet sizes, and pipelined processing. The
coprocessor has the initiative for taking action; all five primitives are called by the coprocessor and
implemented by the shell.

4. Eclipse computation architecture

As shown in Figure 4, the task-level interface separates computation architecture (coprocessors)
from generic infrastructure (shells, buses, memory). This section describes the computation archi-
tecture design issues and shows how the task-level interface is used to build coprocessors. Subse-

8

quently, section 5 details the generic infrastructure to show how the task-level interface and associ-
ated services are implemented.

In the design of coprocessors, Kahn application models are gradually refined into task-level
code that uses the task-level interface [15]. This code subsequently forms the starting point for the
low-level coprocessor design. Eclipse coprocessors explicitly decide on the time instances at which
they can switch the running task, thereby avoiding the hardware costs required for state saving at
arbitrary points in time. The coprocessor can continue up to the point where it has minimal or no
state. At such moments, the coprocessor asks its shell which task it should perform next by calling
the GetTask primitive. We denote the intervals between GetTask inquiries as processing steps.

The coprocessor executes an infinite loop over such processing steps. The following simplified
code shows such a top-level coprocessor control loop, as an example of multi-tasking coprocessor
design using the five Eclipse primitives. The example illustrates the separation of coprocessor
functionality, implemented by the Compute function, from coprocessor control to handle multi-
tasking, synchronization, and data communication.

while(true) {
 // Perform a single processing step
 task_id = GetTask(&task_info);

// Is there data/room for reading/writing?

 blocked = !GetSpace(task_id, IN, INSIZE)
 || !GetSpace(task_id, OUT, OUTSIZE);
 if (blocked) continue; // No useful work to do

Read(task_id, IN, 0, INSIZE, &in_data);
 PutSpace(task_id, IN, INSIZE); // Commit room

Compute(task_info, in_data, &out_data);

Write(task,_id OUT, 0, OUTSIZE, out_data);

 PutSpace(task_id, OUT, OUTSIZE); // Commit data
}

Before the task starts a read or write action, it first tests if there is sufficient data available for
reading and sufficient room for writing via GetSpace. After a read or write action, the amount of
generated data or room is committed to the shell via PutSpace calls. Section 4.1 details this proc-
ess.

4.1. Synchronization of data access

From the view of a coprocessor task port, a data stream looks like an infinite tape of data, with a
current ‘point of access’, as depicted in Figure 5. With the GetSpace call, the coprocessor asks
the shell permission for access to a certain data space ahead of this current point of access. Here,
data space signifies available data for reading from an input data stream, or available room for
writing data to an output stream. If the shell grants permission, the coprocessor can perform Read
or Write actions inside this requested space, with variable-length data (through the n_bytes ar-
gument), and at random access positions (through the offset argument). The shell denies permis-
sion by returning false on the GetSpace call when there is not sufficient data or room available.
The coprocessor is responsible for functionally correct behavior when using the interface primi-
tives, e.g. the coprocessor must adhere to denied GetSpace requests, and not attempt to read or
write data outside the window of granted space. Thus, when GetSpace fails, the coprocessor task
cannot proceed and either the coprocessor can switch tasks or the task can keep on trying to pro-
ceed by repeatedly issuing GetSpace requests. Section 4.2 details these alternatives.

9

a: Initial situation of ‘data tape’ with current access point:

b: GetSpace action provides window on requested space:

c: Read/Write actions on contents:

d: PutSpace action moves access point ahead:

n_bytes2

offset

n_bytes1

Figure 5. Synchronization and data I/O through a single port.

After one or more GetSpace calls—and optionally several Read/Write actions—the coproc-
essor can decide it is finished with processing (some part of) the data and issue a PutSpace call.
This call advances the point-of-access a specified number of bytes ahead, in size constrained by the
previously granted space.

4.2. Task switching

The Eclipse architecture supports multi-tasking, meaning that several application tasks may be
mapped to a single coprocessor, as shown in Figure 3. New silicon technologies allow fast and ef-
ficient coprocessors that have sufficient computation speed for time-shared use. Support for multi-
tasking is essential for achieving flexibility of the architecture towards configuring a range of ap-
plications and reapplying the same hardware coprocessors at different places in an application task
graph. Multi-tasking on the Eclipse coprocessors is a shared responsibility between the coprocessor
and the shell. The shell takes care of task scheduling, while the coprocessor is responsible for pro-
viding task switch points and saving and restoring the task state (if any) upon a task switch.

Eclipse coprocessors operate on a logical units of data—e.g. an 8x8 block of DCT coeffi-
cients—encapsulated in a data packet. The coprocessors can have different patterns of packet con-
sumption and creation. When consumption at the input is synchronized with packet creation at the
output ports of the coprocessor, the coprocessor can switch tasks at the moments when the data
state is void. Typically, coprocessor state is minimal after processing of a complete packet. For in-
stance, a DCT coprocessor is virtually stateless after processing a block of DCT coefficients. To
avoid context switch overhead, Eclipse coprocessors are generally designed to process an integer
number of packets in a single processing step.

However, at the start of a processing step the coprocessors cannot always determine the required
amount of space for completing the processing step. This is for instance the case when the coproc-
essor control has a data-dependent condition upon which it needs to read more data from a second
input port. In such situations, the coprocessor needs to inquire for additional space during a proc-
essing step and may not be able to continue executing the current task. The coprocessor designer
can decide to let the coprocessor wait for the space to arrive, and effectively block the coprocessor.
Alternatively, the coprocessor can call GetTask and give the shell the opportunity to provide a
new task.

A coprocessor does not have to surround each Read or Write request with GetSpace and
PutSpace calls, but can postpone the PutSpace actions to the end of a processing step. As long
as the coprocessor does not commit consumed or produced data by calling PutSpace, the data
remains available in the stream buffer. Thus, upon a negative answer to a conditional GetSpace

10

request, the coprocessor can simply discard the current work and continue with another task. When
the requested space becomes available, the previous task can restart the processing step from the
beginning, re-computing the initial part of the processing step:

while(true) {
 task_id = GetTask(&task_info);

blocked = !GetSpace(task_id, IN, INSIZE)

 || !GetSpace(task_id, OUT, OUTSIZE);
 if (blocked) continue;

Read(task_id, IN, 0, INSIZE, &in_data);

more = ComputeA(task_info, in_data);

if(more) { // Conditional input

if (!GetSpace(task_id, IN2, IN2SIZE))
 continue; // Abort processing step

Read(task_id, IN2, 0, IN2SIZE, &in2_data);
 PutSpace(task_id, IN2, IN2SIZE);
 }
 PutSpace(task_id, IN, INSIZE);

ComputeB(task_info, in_data, in2_data, &out_data);

Write(tak_id, OUT, 0, OUTSIZE, out_data);

 PutSpace(task_id, OUT, OUTSIZE);
}

This example implements a second exit point from the processing step: the continue statement
inside the if(more) condition. However, a single entry point is maintained (the start of the infi-
nite loop). If the second exit point is taken, a later execution for the same task_id will redo the
initial part of the processing step, including Read(IN,…) and ComputeA(…). The Read(IN,…)
action will read the same data as before, since the example deliberately postpones committing this
read with PutSpace(IN,…) until a granted GetSpace(IN2,…) assures that the processing step
can complete.

5. Eclipse generic infrastructure

We aim for a generic infrastructure that is used by all coprocessors. For a clean separation of
generic infrastructure and computation, the infrastructure is deliberately does not interpret the data,
whereas data is interpreted during processing. Communication hardware is a good candidate for
being designed in such a uniform fashion [10], as it needs to be effective for all coprocessors. The
shells maintain the application graph structure and implement a large part of this generic function-
ality, i.e. data transport, task scheduling, stream synchronization, and performance measurement
support. Therefore, the shell is considered part of the generic infrastructure.

5.1. Stream synchronization

Communicating a stream of data requires a FIFO buffer (Figure 3), which in our case has a fi-
nite and constant size. It is pre-allocated in shared on-chip memory. The shell applies a cyclic ad-
dressing mechanism for proper FIFO behavior in the linear memory address range, using the
n_bytes and offset arguments of the Read/Write calls in addition to the current access point
and the buffer size. Figure 6 depicts the fixed size cyclic memory space used as FIFO.

11

The rotation arrow in the center of Figure 6 depicts the direction in which GetSpace calls con-
firm the granted window for Read/Write, which is the same direction in which PutSpace calls
move the access points ahead. The small arrows denote the current access points of tasks A and B.
In this example, A is a producer and hence leaves proper data behind, whereas B is a consumer and
leaves empty space (i.e. already consumed data) behind. The shaded region ahead of each access
point denotes the access window acquired through GetSpace.

Space filled with data

Empty space

A B

Granted window
for producer

Granted window
for consumer

Figure 6. Basic stream mapped to a finite FIFO.

Each shell locally contains the configuration data for the streams that are incident with tasks
mapped on its coprocessor and locally implements all the control logic to properly handle this con-
figuration data. The shells implement a local stream table that contains a row of fields for each
stream, or more precisely, for each access point. To handle the setup of Figure 6, the coprocessor
shells of tasks A and B each contain one such row, holding the following fields:
• A space field containing a (maybe pessimistic) distance from its own point of access towards

the other point of access in this buffer. The space value corresponds to the amount of available
data for reading or the available room for writing;

• A stream ID denoting the remote shell with the task and port of the other point-of-access in this
buffer.

Coprocessor A

Shell

Communication network

VSDFH – = Q
PutSpace(Q)

Coprocessor B

Shell
VSDFH + = Q

GetSpace(P)

Message: putspace(id, Q)

�P d VSDFH�"

Figure 7. Updating local space values and sending putspace messages.

As shown in Figure 7, the shell of coprocessor B can answer a GetSpace request immediately
by comparing the requested size m with the locally stored space value. When the shell of coproces-
sor A receives a PutSpace request, it locally decrements its space field with the indicated amount
n and sends a ‘putspace’ message to the shell of coprocessor B. This remote shell holds the other
point-of-access and increments its space field upon reception of such a ‘putspace’ message.

12

5.2. Data transport

Coprocessors transport all media data to and from their shell through the Read and Write
primitives. The shells subsequently access corresponding locations in the shared stream buffers in
on-chip memory. With the Read and Write primitives, the shell hides aspects such as the width of
system data paths, data alignment in memory and cyclic buffer addressing, and data stream caching
including coherency and prefetching control. Hereto, each stream entry in the stream table of Sec-
tion 5.1 contains the current access point and the size of the stream buffer. Moreover, the shell in-
corporates separate read and write caches that play an important role in decoupling the coprocessor
read and write ports from the global communication network.

The GetSpace/PutSpace synchronization mechanism explicitly controls cache coherency,
fully transparent to the coprocessor. Using local GetSpace and PutSpace events for explicit
cache coherency control results in a simple and efficient implementation in comparison with exist-
ing generic coherency mechanisms such as bus snooping. The cache-coherency mechanism builds
on three key observations:
1. The access window, which is granted to a task port onto stream data, is guaranteed to be pri-

vate. Thus, Read/Write operations in this area are safe and do not require intra-processor
communication.

2. Local GetSpace requests extend the access window, obtaining new memory space in the cy-
clic buffer. Data in the cache that corresponds to this new memory space possibly needs invali-
dation. A subsequent Read action on such a cache location then results in a cache miss, upon
which the cache loads fresh valid data from the cyclic buffer.

3. Local PutSpace requests reduce the access window, leaving new memory space to a successor
in the cyclic buffer. Dirty data in the cache that corresponds to the memory space in the reduc-
tion interval needs to be flushed to the cyclic buffer to make the local data available for other
processors. Sending the ‘putspace’ message to another coprocessor must be postponed until the
cache flush is completed and safe ordering of memory operations can be guaranteed.

Apart from cache coherency, the shell also initiates stream prefetches upon local GetSpace and
Read requests to reduce cache miss penalties.

5.3. Task scheduling

Clearly, multi-tasking implies the need for a task scheduler that decides which task any coproc-
essor must execute at which points in time to attain proper application progress. As Eclipse is tar-
geted at irregular data-dependent stream processing and dynamic workloads, the scheduler must be
effective for applications with dynamic workload such as to optimally utilize the Eclipse coproces-
sors. Therefore, task scheduling cannot be done off-line but is performed at run-time.

Eclipse targets relatively high performance, high data throughput applications with aggregate
bandwidths in the order of GBytes per second. Due to the limited size for on-chip memory contain-
ing the stream FIFO buffers, high data synchronization and task switch rates are required. As the
task switch rate is too high (10-100 kHz) for run-time scheduling in software, Eclipse implements
task scheduling and synchronization in dedicated hardware as part of the coprocessor shell.

The parameterized shell template can be reused for each coprocessor shell. Therefore, the
scheduling algorithm must be sufficiently simple to allow a cost-effective hardware implementa-
tion in each shell. On the other hand, the scheduling algorithm needs to be flexible enough to fit
the needs of different coprocessors and applications. Autonomy of the coprocessors contributes to
both scalability and cost-effectiveness. Therefore, task scheduling is distributed, where the task
scheduler in each shell runs independent of task schedulers in other shells.

13

The target granularity for processing steps within the Eclipse architecture is in the range of 10—
1000 clock cycles. Typically, the duration of a processing step is data dependent and can vary
within this range. The number of processing steps needed to complete an application milestone
(e.g. an MPEG frame), as well as the number of produced and consumed data items per processing
step, may also be data dependent. The task scheduler must manage such highly data-dependent
workloads in such a way that the coprocessor is used cost-effectively.
The task scheduler is based on round-robin style task selection as this can be efficiently imple-
mented in hardware. The scheduler uses a weighted round-robin scheme, where the weights or
budgets are configured as a guaranteed minimum number of cycles that a task may continuously
execute, irrespective of the resource requirements of other tasks [13]. These budgets typically
range from 1000 up to 10,000 clock cycles (10—100 processing steps). The tasks that are mapped
onto the coprocessor are configured in the task table in the shell, which contains among others the
resource budget per task.

The task scheduler cannot determine in advance whether a task can complete a processing step.
Therefore, the scheduler performs a ‘best guess’ by considering both the available data and room in
the stream buffers as well as previously denied data access (For details, see [13]). Section 5.1
shows that this information is locally available in the shell. Task scheduling with this ‘best guess’
strategy is effective by selecting the right tasks in the majority of the cases, and recover with a lim-
ited penalty otherwise.

5.4. Performance measurement support

Eclipse supports performance measurement (profiling) in hardware in the shells. Measurements
include buffer filling, coprocessor utilization, data access latency, etc. These hardware measure-
ments can be used for:
• Optimizing application behavior with given silicon when creating product applications;
• Run-time control for quality-of-service resource management [1] in the final product.
Measurement data is accumulated in the stream and task tables in the shell. This allows to collect
performance measurement at application level, i.e. per task and per stream, instead of per coproc-
essor.

All shell tables are memory-mapped and accessible to the main CPU via a control bus (PI-bus).
Thus, the main CPU can collect measurement data at regular time intervals, e.g. once per MPEG
frame. However, accumulating a measurement every cycle for a complete MPEG frame requires a
significant amount of memory in the shell. To reduce hardware costs of measurement support, a
separate process in the shell takes measurement samples at regular intervals. With given memory
size, the main CPU can balance the duration of these intervals with the duration of the total meas-
urement.

6. Eclipse instance

Figure 8 depicts a first instantiation of the Eclipse template, to be deployed as an MPEG subsys-
tem in SoC platforms aimed at high-definition television functionality, e.g. the Philips Nexperia
line of chips for digital video [3]. This Eclipse instance targets decoding of two high-definition
(HD) MPEG-2 streams simultaneously, or standard definition (SD) MPEG-2 encoding in parallel
with decoding a number of SD MPEG-2 streams. Various combinations are possible, such as de-
coding one HD stream and decoding two SD streams in parallel, or transcoding for time-shift func-
tionality. The CPU is responsible for configuring these applications at run-time by programming
the stream and task tables in the shells through the PI-bus (not shown in Figure 8).

14

Figure 8 shows dedicated hardware units for MPEG processing. These coprocessors are multi-
tasking and weakly programmable, e.g. the DCT coprocessor can time-share both the forward and
inverse DCT functions of one or more MPEG encoding applications and the inverse DCT of one or
more decoding applications. Equivalently, the RLSQ coprocessor performs the run-length decod-
ing, inverse scan, and inverse quantization of the MPEG-2 decoding graph (Figure 2), as well as
the encoding variant: quantization, zigzag scan and run-length encoding. The motion compensa-
tion/motion estimation (MC/ME) coprocessor has a dedicated connection to the system bus to ac-
cess MPEG reference frames in off-chip memory. Similarly, the VLD coprocessor fetches the
incoming compressed bit-streams from off-chip memory. Audio decoding, variable-length encod-
ing, and de-multiplexing are executed in software on the media processor (DSP-CPU).

'DWD�WUDQVSRUW

DCTDCTRLSQRLSQVLDVLD

ArbiterArbiter

On-chip
Memory
On-chip
Memory

DSP
CPU
DSP
CPU

I$ D$

System bus hubSystem bus hub

6\VWHP�EXV�

6\QFKURQL]DWLRQ

MC/MEMC/ME

ShellShellShellShellShellShellShellShell ShellShell

Figure 8. Eclipse instance for video coding.

The flexible connection of medium-grain functions requires a significant communication band-
width from the system. For this instance, the targeted applications allow the use of a single on-chip
memory (SRAM) for communication buffering with a wide data-path (128 bits) to provide the nec-
essary bandwidth. For instances demanding a higher communication bandwidth, the architect must
balance the flexibility of allocating buffers with configurable sizes in a centralized memory versus
the scalability and performance of distributed memory implementations.

The computational performance for decoding two high-definition (HD) MPEG streams is
roughly 36 Gops per second on mostly 16 bits data items. Our initial estimates indicate that the
Eclipse instance of Figure 8 takes less than 7 mm2 of silicon area in 0.18 micron CMOS technol-
ogy. This includes 1.7 mm2 for a 32 kB on-chip memory and 2.0 mm2 for a programmable VLD
coprocessor, but excludes the DSP-CPU. All coprocessors will be synthesized for operation at 150
MHz. The on-chip SRAM operates at 300 MHz needed to support separate read and write data
buses, each running at 150 MHz. Total power consumption is estimated to be less than 240 mW
for simultaneous decoding of two HD MPEG streams. Detailed analysis and design is currently in
progress.

7. Eclipse simulation environment

At this moment in time, Eclipse exists only as a simulator model, supporting application execu-
tion and tuning for particular instances. The full architecture is modeled in a flexible cycle-accurate
simulator, albeit at a high abstraction level. The simulation environment supports a design trajec-
tory with gradual refinement of Kahn application models into cycle-accurate Eclipse coprocessor
models. Thereto, the simulator supports mixed-level simulation at various levels of abstraction.

15

We developed the simulator as a design tool, similar to the approach of Hocevar et al. [6]. Func-
tionally correct simulation models provide quantitative feedback and allow us to explore the design
space of the Eclipse architecture before diving into gate-level design. To this end, the simulator is
accompanied by graphical tools for configuring application graphs and visualizing the numerical
results. Experiments include caching strategies in the shell (e.g. varying cache size, cache prefetch-
ing or not), bus latency and width, etc. Thereto, the simulator parses a setup file that contains these
architectural parameters and collects measurement data such as the filling of communication buff-
ers and the execution time of a coprocessor.

The most complex aspect of design-space exploration is to interpret the numerical results.
Therefore, we developed new techniques for visualizing performance data of such multiprocessor
architectures. Figure 9 gives an example output of an Eclipse simulation run. The viewer differen-
tiates between architecture views (e.g. VLD coprocessor utilization) and application views (e.g.
stream buffer filling, stall time of tasks). Note that the viewer is separated from the simulation en-
vironment, and can also be used to visualize the hardware measurements of Section 5.4.

Figure 9. Eclipse performance visualization example.

Figure 10 depicts the results of a simulation run early in the development of the first Eclipse in-
stance. The figures show the available data in the stream buffers for the input of MPEG-decoding
tasks running on the RLSQ, DCT, and MC coprocessors. The fluctuations in the diagrams clearly
show the data-dependent behavior of MPEG-2 decoding. An MPEG sequence consists of intra
frames (I-frames), predicted frames (P-frames), and bi-directional predicted frames (B-frames).
The I-frames are coded using the data in the frame itself, whereas P-frames are coded using the
data from the nearest previous I-frame or P-frame. To further exploit temporal redundancy, B-
frames are coded using the data from the past as well as future I/P frames. Large variations in
buffer filling correspond to the GOP sequence of MPEG-2 frames that served as input, i.e. the
IPBBPBBP sequence of frames as shown in the top of the figure.

16

0 1 2 3 4 5 6 7

x 10
6

0

200

400

600

R
LS

Q
 in

pu
t (

by
te

)

0 1 2 3 4 5 6 7

x 10
6

0

500

1000

D
C

T
 in

pu
t (

by
te

)

0 1 2 3 4 5 6 7

x 10
6

0

200

400

600

Simulation cycles

M
C

 in
pu

t (
by

te
)

I−frame P−frame B B P−frame B B P−frame

Figure 10. Available data for RLSQ, DCT, and MC input streams.

Furthermore, Figure 10 shows that for I-frames, the RLSQ task is the bottleneck in this applica-
tion, as it cannot consume the available input data with the rate at which this data becomes avail-
able. Consequently, the DCT and MC tasks are waiting for input data from the RLSQ task. For P-
frames, the bottleneck apparently shifts from the RLSQ task to the DCT task. For B-frames, the
MC task needs to fetch macroblock data from both forward and backward prediction frames in ex-
ternal memory. This causes the bottleneck to shift to the MC task. Thus, the figure shows that the
overall performance is constrained by a different task for each type of MPEG frame. Based on this
feedback, we decided to increase performance by pipelining the DCT coprocessor [14] and im-
proving the prefetching strategy of the data caches in the shell. The next step is to increase the av-
erage MC performance, e.g. by adding a cache to hide the latency of accessing prediction data in
external memory.

8. Conclusion

Eclipse introduces a cost-effective and scalable template for SoC subsystems consisting of an
adjustable mix of hardware and software modules. The targeted media applications combine real-
time and dynamic behavior. The strict separation of application functionality from the generic in-
terconnect structure was introduced at the start of design and adhered to in a rigorous fashion. The
resulting uniform interface separates computation hardware, or coprocessors, from generic support
for multi-tasking, synchronization, and data transport. This interface not only keeps coprocessor
design simple, but also facilitates reuse of coprocessors over a set of media applications.

The interface copes with irregular and unpredictable application loads by separating the trans-
port of streaming data from synchronizing the access to the data. The combined requirements of
scalability and cost-effectiveness led us to a novel approach that features distributed scheduling
and distributed synchronization with high task-switch and synchronization rates. These are sup-
ported by a generic hardware implementation, dedicated to each coprocessor. In general, a generic
approach as followed in Eclipse generates additional overhead. However, according to our esti-
mates, the resulting systems are still highly cost-effective. The design philosophy of separation of
concerns proved to be essential to manage the otherwise daunting overall complexity.

17

Another aspect of our design philosophy was to guide our design trajectory by simulation re-
sults. To this end, a retargetable simulator of the Eclipse template was designed and implemented.
The simulator provided quantitative feedback on the behavior of Eclipse early in the design phase.
The Eclipse architecture has been explored in a first instantiation for simultaneous MPEG-2 encod-
ing and decoding of multiple streams at various resolutions. Currently, we are studying extensions
towards MPEG-4 functionality [16], such that a single Eclipse subsystem can support a program-
mable mix of MPEG-2 and MPEG-4 encoding and decoding applications.

References

[1] R.J. Bril et al., “Multimedia QoS in Consumer Terminals”, IEEE Workshop on Signal Processing Systems (SIPS),
pp. 332-344, Sept 2001, Antwerp, Belgium.

[2] V.M. Bove, Jr. and J.A. Watlington, “Cheops: A reconfigurable Data-flow System for Video Processing”, IEEE
trans. On Circuits and Systems for Video Technology, vol. 5, no. 2, pp. 140-149, April 1995.

[3] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A Multiprocessor SOC for Advanced Set-Top Box and Digital TV
Systems”, IEEE Design and Test of Computers, pp. 21-31, Sept-Oct. 2001.

[4] O.P. Gangwal, A. Nieuwland, and P. Lippens, “A Scalable and Flexible Data Synchronization Scheme for Em-
bedded HW-SW Shared-Memory Systems”, Int. Symp. On System Synthesis (ISSS), pp. 1-6, Oct. 2001, Montréal,
Canada.

[5] R.J. Grove, G.J. Hewlett, and D.B. Doherty, “The MVP: A Single-Chip Processor for Advanced Television Ap-
plications”, Proc. Int. Workshop on Signal Processing of HDTV, vol. 6, pp. 479-487, Oct. 1994, Turin, Italy.

[6] D. Hocevar, S. Sriram, and C.Y. Hung, “A Performance Simulation Approach for MPEG Audio/Video Decoder
Architectures”, Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 6, pp. 203-206, June 1998, Mon-
terey, CA, USA..

[7] E.G.T. Jaspers and P.H.N. de With, “Architecture of Embedded Video Processing in a Multimedia Chip-set”,
Proc. of IEEE Int. Conf. on Image Proc,(ICIP 99), vol. 2, pp. 787-791, Oct. 1999, Kobe, Japan.

[8] G. Kahn, “The Semantics of a Simple Language for Parallel Programming”, Proc. of Information Processing ‘74,
August 5-10, Stockholm, Sweden, North-Holland publ. Co., pp. 471-475, 1974.

[9] G. Kahn and D.B. MacQueen, “Coroutines and Networks of Parallel Programming”, Proc. of Information Proc-
essing ‘77, North Holland publ., pp. 993-998, 1977.

[10] K. Keutzer et al., “System-Level Design: Orthogonalization of Concerns and Platform-Based Design”, IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 12, pp. 1523-1543, Dec 2000.

[11] E.A. de Kock et al., “YAPI: Application Modeling for Signal Processing Systems”, Proc. 37th Design Automation
Conf. (DAC), pp. 402-405, June 2000, Los Angeles, CA, USA.

[12] W. Lee and C. Basoglu, “MPEG-2 Decoder Implementation on MAP-CA Mediaprocessor using the C Language”,
Proc. of the SPIE: Media Processors 2000, vol. 3970, Jan. 2000.

[13] M.J. Rutten, J.T.J. van Eijndhoven, and E.J.D. Pol, “Robust media processing in a flexible and cost-effective net-
work of multi-tasking coprocessors”, Euromicro Conf. on Real-Time Systems, June 2002, Vienna, Austria.

[14] M.J. Rutten, J.T.J. van Eijndhoven, and E.J.D. Pol, “Design of Multi-Tasking Coprocessor Control for Eclipse”,
10th Int. Symp. On Hardware/Software Codesign (CODES), May 2002, Estes Park, CO, USA.

[15] M.J. Rutten, O.P. Gangwal, J. van Eijndhoven, E. Jaspers, and E.J. Pol, “Hardware/Software Codesign of Reus-
able MPEG Coprocessors for Eclipse”, Int. Conf. on Computer Design (ICCD), Sept 2002, Freiburg, Germany,
submitted for publication.

[16] E.B. van der Tol and E.G.T. Jaspers, “Mapping of MPEG-4 decoding on a flexible architecture platform”, Media
Processors 2002, vol. 4674, Jan. 2002, San Jose, CA, USA.

[17] D. Wingard and A. Kurosawa, “Integration Architecture for System-on-a-Chip Design”, Proc. of the IEEE 1998
Custom Circuits Conf., pp. 85-88, May 1998.

[18] D.C. Wyland, “Media Processors Using a New Microsystem Architecture Designed for the Internet Era”, Proc. of
the SPIE: Media Processors 2000, vol. 3970, pp. 2-15, Jan. 2000.

	Introduction
	Design aspects of media-processing architectures
	Parallelism and flexibility
	Tightness of coupling
	Scalability and separation of concerns

	Eclipse architecture template
	Coprocessor shell
	Task-level interface

	Eclipse computation architecture
	Synchronization of data access
	Task switching

	Eclipse generic infrastructure
	Stream synchronization
	Data transport
	Task scheduling
	Performance measurement support

	Eclipse instance
	Eclipse simulation environment
	Conclusion

