
Application analysis for parallelization on
multi-core devices

Jos van Eijndhoven
jos@vectorfabrics.com

HiPEAC Computing Systems, Ghent, Belgium

Oct 16, 2012

HiPEAC Computing Systems week 2 | Oct 16, 2012

Multi-core processors are here to stay

To make use of growing transistor count

To allow run-time trade-offs between
performance and power

AMD Fusion Llano

nVidia Tegra3

Intel Xeon PHI

HiPEAC Computing Systems week 3 | Oct 16, 2012

Multi-core in Mobile

2 cores:
Assume the OS provides multiple processes and/or kernel
threads for workload

4 cores (and beyond):
Requires multi-threaded applications

To obtain sufficient concurrent workload

To obtain top user experience

Who makes such applications??

HiPEAC Computing Systems week 4 | Oct 16, 2012

Creating parallel programs is hard…

Herb Sutter, chair of the ISO C++ standards committee,
Microsoft:

“Everybody who learns concurrency thinks they understand it,
ends up finding mysterious races they thought weren’t
possible, and discovers that they didn’t actually understand it
yet after all”

Steve Jobs, Apple:

“The way the processor industry is going,

is to add more and more cores, but nobody

knows how to program those things. I mean,

two yeah; four not really; eight, forget it.”

HiPEAC Computing Systems week 5 | Oct 16, 2012

Presentation index

Introduction

Dependencies that hinder multi-threading

Parallelization with dependencies:

Data-parallelization with reduction expressions

Task-parallelization with streaming dependencies

Tooling for parallelization of sequential C code

Conclusion

HiPEAC Computing Systems week 6 | Oct 16, 2012

Creating multi-threaded concurrency

Fork

Join

Main program thread

Concurrent computation threads

Main thread continues

Basic fork-join pattern, created through different
higher-level programming constructs

Creation of threads is application responsibility.
Operating System handles run-time scheduling
across available processors!

HiPEAC Computing Systems week 7 | Oct 16, 2012

Parallelization – two partitioning options

for (i=0; i<4; i++) {

 A(i);

 B(i);

 C(i);

}

Source code: Sequential execution order:

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Fo
rk

Jo
in

Task partitioning:

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Data partitioning:

Fork

Join

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

HiPEAC Computing Systems week 8 | Oct 16, 2012

Issue: Data dependencies

Adjust program source for parallelization:

When feasible, remove inter-thread data dependencies

Implement required data synchronization

Consciously choose task versus data partitioning, check dependency analysis!

Fork

Join

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Fork

Join

A(0)

B(0) A(1)

C(0) B(1) A(2)

 C(1) B(2) A(3)

 C(2) B(3)

 C(3)

Maybe, B(i)
produces a value
that is used by
A(i+1)...

HiPEAC Computing Systems week 9 | Oct 16, 2012

Category 1: Data dependencies

Variable assigned in loop body, used in later iteration

// search linked-list for matching items

// save matches in ‘found’ array of pointers

for (p = head, n_found = 0; p; p = p->next)

 if (match_criterion(p))

 found[n_found++] = p;

Cannot (easily/trivially) spawn data-parrallel tasks!

No direct parallel access to list members *p

No direct way to assign index to matched item n_found

Maybe more problems hidden in match_criterion

HiPEAC Computing Systems week 10 | Oct 16, 2012

Category 2: Anti dependencies

Storage location used in loop body, shared over iterations

// convert table with floats to strings

char word[64];

for (i=0; i<N; i++)

{

 sprintf(word, “%g”, table_float[i]);

 table_string[i] = strdup(word);

}

Anti-dependencies are resolved by duplicating storage
locations (thread-local storage)

Need to make multiple copies of word[] space

HiPEAC Computing Systems week 11 | Oct 16, 2012

Category 3: Control dependencies

Control flow can give order constraints that hinders

parallelization:

// No creation of work beyond some point

for (i=0; i<N; i++)

{

 if (special_condition(i))

 break;

 table[i] = workload(i);

}

Since multiple threads proceed at non-determined mutual speed,

above test risks violation in a data-parallel loop.

Note: C++ exceptions certainly belong to this category

HiPEAC Computing Systems week 12 | Oct 16, 2012

Presentation index

Introduction

Dependencies that hinder multi-threading

Parallelization with dependencies:

Data-parallelization with reduction expressions

Task-parallelization with streaming dependencies

Tooling for parallelization of sequential C code

Conclusion

HiPEAC Computing Systems week 13 | Oct 16, 2012

Can do: reduction data dependencies

Reduction expressions: accumulate results of loop bodies with
commutative operations

Freedom of re-ordering allows to break sequential constraints

// conditionally accumulate results

int acc = 0;

for (i=0; i<N; i++)

{

 int result = some_work(i);

 if (some condition(i))

 acc += result;

}

...use of acc ...

Commutative operations are basic math like +, *, &&, &, ||,
but also more complex operations like ‘add to set’.

Three(?) different methods to handle these ...

HiPEAC Computing Systems week 14 | Oct 16, 2012

Three methods for reduction dependencies

Create thread-local copies of the accumulator. Accumulate over
local copy in each thread. Merge the partial accumulators after
thread-join.
Eg. created automatically by:
#pragma omp parallel for reduction(...)

Maintain single accumulator, synchronize updates through
atomic operations. Eg. in C++11:
atomic_add_fetch(&acc, result);

Maintain single accumulator, synchronize updates through
protection by acquiring and releasing semaphores.
Eg. Used by C++ Intel TBB:
concurrent_unordered_set<..> s;
s.insert(...);

HiPEAC Computing Systems week 15 | Oct 16, 2012

Example data partitioning

int sum = 0;

for (i=0; i<N; i++) {

 int value = some_work(i);

 sum += value;

}

 Distribute the workload over multiple cores.
 Each core handles part of the loop index space.

 int sum = 0;

#pragma omp parallel for reduction (+:sum)

for (i=0; i<N; i++) {

 int value = some_work(i);

 sum += value;

}

Workload scales nicely across multiple cores

Easy to write down , but hard to grasp all consequences!
 Dangerous, might cause extremely hard-to-track bugs!

HiPEAC Computing Systems week 16 | Oct 16, 2012

PAREON: Parallelization Analysis

Note: this is a preview on
a potential parallelization

HiPEAC Computing Systems week 17 | Oct 16, 2012

Pipelining: Data deps & functional partitioning

Queue implementation solves dependencies:

Synchronize Data dependencies: Consumer thread waits for
available data (stalls until queue is non-empty)

Solve Anti dependencies: Producer thread creates next item in next
memory location (prevents overwriting previous value)

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Fo
rk

Jo
in

Functional partitioning with inter-thread dependencies:

Application

Thread A() Thread B() Thread C() Queue Queue

Producer-Consumer pattern:

HiPEAC Computing Systems week 18 | Oct 16, 2012

Example functional partitioning

int A[N][M];

while (..)

{ produce_img();

 consume_img();

}

produce_img()

{ for (i ...)

 for (j ...)

 A[i][j] = ...

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = A[i][j];

}

Thread1:

 while (..)

 produce_img();

Thread2:

 while (..)

 consume_img();

HiPEAC Computing Systems week 19 | Oct 16, 2012

Function pipelining: synchronization

int A[N][M];

while (..)

{ produce_img();

 consume_img();

}

produce_img()

{ for (i ...)

 for (j ...)

 A[i][j] = ...

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = A[i][j];

}

Thread1: …

Thread2:…

concurrent_queue<int> qA;

produce_img()

{ for (i ...)

 for (j ...)

 qA.push(...)

}

consume_img()

{ for (i ...)

 for (j ...)

 qA.pop(&...);

}

Conversion to queues becomes more difficult when data items
are not always assigned and referenced exactly once in order!

HiPEAC Computing Systems week 20 | Oct 16, 2012

PAREON: Pipeline dependency analysis

Potential pipelining
showed in colors,

with resulting Fifo's

HiPEAC Computing Systems week 21 | Oct 16, 2012

Presentation index

Introduction

Dependencies that hinder multi-threading

Parallelization with dependencies:

Data-parallelization with reduction expressions

Task-parallelization with streaming dependencies

Tooling for parallelization of sequential C code

Conclusion

HiPEAC Computing Systems week 22 | Oct 16, 2012

Concurrent C/C++ programming: Pitfalls

Risc introduction of functional errors:

Overlooking use of shared/global variables

(deep down inside called functions, or inside 3rd party library)

Overlooking exceptions that are raised and catched outside
studied scope

Incorrect use of semaphores: flawed protection, deadlocks

Unexpected performance issues:

Underestimation of time spent in added multi-threading or
synchronization code and libraries

Underestimation of other penalties in OS and HW
(inter-core cache penalties, context switches, clock-frequency
reductions)

Parallel programming remains hard!

HiPEAC Computing Systems week 23 | Oct 16, 2012

Concurrent programming remains hard

C++11 standardizes valuable primitives

Provides good insight in C++ concurrency

Warns for many subtle problems

From a research point-of-view, shows that
C++ is not a nice language to design
concurrency.

HiPEAC Computing Systems week 24 | Oct 16, 2012

Development of parallel code

Guidelines:

Base upon a sequential program:
functional and performance reference

Apply higher-level parallelization patterns and primitives:
clear semantics, re-use code, reduce risk

Use tooling for analysis and verification

Prevent introduction of hard-to-find bugs

Prevent recoding effort that does not perform

Managable development process!

HiPEAC Computing Systems week 25 | Oct 16, 2012

PAREON step 1: Code instrumentation

Build application with compiler that inserts instrumentation:

Creates instrumentation for run-time tracing of application
activity (function entry/exit, loop entry/exit, ld/st
addresses)

To support run-time data-dependency analysis

Also support code coverage analysis

HiPEAC Computing Systems week 26 | Oct 16, 2012

PAREON 2: run-time dependency analysis

Execute instrumented program with test input data:

Trace analysis detects dependencies between loads & stores
at different program locations to same memory address.

Differentiate loop-inbound, loop-carried and loop-outbound
dependencies

Relate with stack grow/shrink and heap malloc/free to break
non-functional address re-use.

Handle all scalar register-mapped data dependencies by static
code analysis.

HiPEAC Computing Systems week 27 | Oct 16, 2012

PAREON 3: find concurrency opportunities

GUI to browse loops with high workload and parallelization opportunities:

Provide workload estimate and reachable speed-up

Match detected dependencies with higher-level parallelization patterns for
resolving (...)

Prevent loop parallelization with unresolved dependencies

HiPEAC Computing Systems week 28 | Oct 16, 2012

Performance Verification

For example: PERF ‘flame graph’
• sampling-based profiling
• multi-thread supprt
• with view into kernel-level
Note: parallelization of ‘inner loops’

makes no sense in this app

HiPEAC Computing Systems week 29 | Oct 16, 2012

Conclusion

Todays gap: multi-core CPUs are everywhere, yet multi-threaded
programming remains hard (in C/C++):

Risc of creating hard-to-locate bugs regarding dynamic data
races and semaphore issues

Obtained speedup is lower then expected

A sequential functional reference implementation helps to set a baseline

Proper tooling is needed to save on edit-verify development cycles

HiPEAC Computing Systems week 30 | Oct 16, 2012

Conclusion

Todays gap: multi-core CPUs are everywhere, yet multi-threaded
programming remains hard (in C/C++):

Risc of creating hard-to-locate bugs regarding dynamic data
races and semaphore issues

Obtained speedup is lower then expected

A sequential functional reference implementation helps to set a baseline

Proper tooling is needed to save on edit-verify development cycles

Thank you

Check www.vectorfabrics.com for a free demo on concurrency analysis

http://www.vectorfabrics.com/

