
24-9-2012

1

SOFTWARE & SYSTEMS
 DESIGN

Application parallelization for
multi-core Android devices

Jos van Eijndhoven

Vector Fabrics BV

The Netherlands

http://www.vectorfabrics.com

MULTI-CORE PROCESSORS:
HERE TO STAY

• Multi-core processors
are here to stay

• To make use of growing
transistor count

• To allow run-time
trade-offs between
performance and
power

24-9-2012

2

GET MULTIPLE CORES TO WORK?

• 2 cores:
Assume the OS provides multiple processes
and/or kernel threads for workload

• 4 cores (and beyond):
Requires multi-threaded applications
– To obtain sufficient concurrent workload

– To obtain top user experience

Who makes such applications??

PARALLEL PROGRAMMING
IS HARDER THEN YOU THINK

Herb Sutter, chair of the ISO C++ standards
committee, Microsoft:
“Everybody who learns concurrency thinks they understand
it, ends up finding mysterious races they thought weren’t
possible, and discovers that they didn’t actually understand
it yet after all”

Steve Jobs, Apple:
“The way the processor industry is going,
is to add more and more cores, but nobody
knows how to program those things.
I mean, two yeah; four not really;

eight, forget it.”

24-9-2012

3

PRESENTATION CONTENT

• Multi-threading concepts:
– data- vs. task-partitioning
– dependencies

• Concurrent programming
– Patterns: reductions, functional pipelining
– Pitfalls
– Tooling support

• Android support
– Use cases
– Tooling

• Extension to GP-GPU
• Conclusion

Fork

Join

Main program thread

Concurrent computation threads

Main thread continues

Basic fork-join pattern, created through different
higher-level programming constructs

Creation of threads is application responsibility.
Operating System handles run-time scheduling
across available processors!

MULTI-THREADING: FORK-JOIN

24-9-2012

4

PARALLELIZATION :
DATA- VERSUS TASK-PARTITIONING

for (i=0; i<N; i++) {

 A(i);

 B(i);

 C(i);

}

Source code: Sequential execution order:

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Fo
rk

Jo
in

Task partitioning:

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Data partitioning:

Fork

Join

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

(for large N, partition iterations over fewer threads)

ISSUE: DATA DEPENDENCIES

Adjust program source for parallelization:

• When feasible, remove inter-thread data dependencies

• Implement required data synchronization

Consciously choose task versus data partitioning, check dependency analysis!

Fork

Join

A(0) A(1) A(2) A(3)

B(0) B(1) B(2) B(3)

C(0) C(1) C(2) C(3)

Fork

Join

A(0)

B(0) A(1)

C(0) B(1) A(2)

 C(1) B(2) A(3)

 C(2) B(3)

 C(3)

Maybe, B(i)
produces a value
that is used by
A(i+1)...

24-9-2012

5

EXAMPLE: DATA DEPENDENCIES

Variable assigned in loop body, used in later iteration
// search linked-list for matching items

// save matches in ‘found’ array of pointers

for (p = head, n_found = 0; p; p = p->next)

 if (match_criterion(p))

 found[n_found++] = p;

Cannot (easily/trivially) spawn data-parrallel tasks!

• No direct parallel access to list members *p

• No direct way to assign index to matched item n_found

• Maybe more problems hidden in match_criterion

EXAMPLE: ANTI DEPENDENCIES

Storage location used in loop body, shared over iterations
// convert table with floats to strings

char word[64];

for (i=0; i<N; i++)

{

 sprintf(word, “%g”, table_float[i]);

 table_string[i] = strdup(word);

}

• Anti-dependencies are resolved by duplicating storage

locations (thread-local storage)
• Need to make multiple copies of word[] space

24-9-2012

6

EXAMPLE: CONTROL DEPENDENCIES

Control gives order constraints that hinder parallelization:
// No creation of work beyond some point

for (i=0; i<N; i++)

{

 if (special_condition(i))

 break;

 // remainder of work is only OK after test

 table[i] = workload(i);

}

Since multiple threads proceed at non-determined speed
(mutual order), above test risks violation in a data-parallel loop.

PRESENTATION CONTENT

• Multi-threading concepts:
– data- vs. task-partitioning
– dependencies

• Concurrent programming
– Patterns: reductions, functional pipelining
– Pitfalls
– Tooling support

• Android support
– Use cases
– Tooling

• Extension to GP-GPU
• Conclusion

24-9-2012

7

SOLVED: REDUCTION DATA
DEPENDENCIES

• Reduction expressions: accumulate results of loop bodies with
commutative operations:
// conditionally accumulate results

int acc = 0;

for (i=0; i<N; i++)

{

 int result = some_work(i);

 if (some condition(i))

 acc += result;

}

...use of acc ...

• Commutative operations are basic math as +, *, &&, &, ||,
but also more complex operations like ‘add to set’.

• Parallelization can be achieved in (3?) different ways...

SOLVED: REDUCTION DATA
DEPENDENCIES

Options to parallelize loops with reductions:
1. Create thread-local copies of the accumulator.

Accumulate over local copy in each thread.
Merge the partial accumulators after thread-join.
Eg. created automatically after:
#pragma OMP parallel for reduction(...)

2. Have one accumulator, synchronize updates
through atomic operations. Eg. in C++11:
atomic_add_fetch(&acc, result);

3. Have one accumulator, synchronize updates
through protection by acquiring and releasing
semaphores. Eg. From the C++ Intel TBB:
concurrent_unordered_set

24-9-2012

8

TASK PARALLELIZATION:
STREAMING DEPENDENCIES

int A[N][M];

while (..)

{ produce_img();

 consume_img();

}

produce_img()

{ for (i ...)

 for (j ...)

 A[i][j] = ...

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = A[i][j];

}

Thread1: while (..)

 produce_img();

Thread2: while (..)

 consume_img();

Synchronize thread progress:

True dependency: consumer must
wait for valid data

Anti dependency: producer must
wait with over-writing until after
consumption

STREAMING DEPENDENCY:
MODIFY DATA MODEL

int A[N][M];

while (..)

{ produce_img();

 consume_img();

}

produce_img()

{ for (i ...)

 for (j ...)

 A[i][j] = ...

}

consume_img()

{ for (i ...)

 for (j ...)

 ... = A[i][j];

}

Thread1: while (..)

 produce_img();

Thread2: while (..)

 consume_img();

concurrent_bounded_queue Aq;

produce_img()

{ for (i ...)

 for (j ...)

 Aq.push(...)

}

consume_img()

{ for (i ...)

 for (j ...)

 Aq.pop(...);

}
Channel access functions

implement thread stall.

24-9-2012

9

CONCURRENT PROGRAMMING:
MANY PITFALLS

Introducing functional errors:
– Overlooking use of shared/global variables

(deep down inside called functions, or inside 3rd party
library functions)

– Overlooking exceptions that are raised or catched outside
studied scope

– Incorrect use of semaphores: flawed protection, deadlocks

Unexpected performance issues:
– Underestimation of time spent in added multi-threading or

synchronization code and libraries
– Underestimation of other penalties in OS and HW

(inter-core cache penalties, context switches, clock-
frequency reductions)

Parallel programming remains hard!

DEVELOPMENT OF PARALLEL CODE

Guidelines:

• Base upon a sequential program:
functional and performance reference

• Apply higher-level parallelization patterns:
clear semantics, re-use code, reduce risk

• Use tooling for analysis and verification
– Prevent introduction of hard-to-find bugs

– Prevent recoding effort that does not perform

Managable development process!

24-9-2012

10

PRESENTATION CONTENT

• Multi-threading concepts:
– data- vs. task-partitioning
– dependencies

• Concurrent programming
– Patterns: reductions, functional pipelining
– Pitfalls
– Tooling support

• Android support
– Use cases
– Tooling

• Extension to GP-GPU
• Conclusion

PAREON DATA PARTITIONING:
SCHEDULE VIEW WITH SYNCHRONIZATION

Insight in proposed parallel solution:
• Data-partitioning with inter-thread data dependencies
• Speedup estimates based on anticipated schedule and overhead
• Clickable dependencies show properties and link to source code

24-9-2012

11

PAREON PREVIEW:
TASK PARTITIONING ON PLAIN C CODE

VERIFICATION:
PERFORMANCE MEASUREMENT

For example: PERF ‘flame graph’
• sampling-based profiling
• with view into kernel-level

24-9-2012

12

PAREON CODE INSTRUMENTATION AT
COMPILATION

• Proprietary C/C++ compiler

• Creates instrumentation for run-time
tracing of application activity (function
entry/exit, loop entry/exit, ld/st addresses)

• Allows the analysis of ld/st address
patterns in relation with loop nesting,
across file scope.

• Allows code coverage analysis

PAREON PARALLELIZATION PATTERN
ANALYSIS

• Analysis detects interactions between loads
& stores at different program locations to
same memory address.

• Differentiate loop-inbound, loop-carried
and loop-outbound dependencies

• Relate with malloc/free on same addresses

24-9-2012

13

PRESENTATION CONTENT

• Multi-threading concepts:
– data- vs. task-partitioning
– dependencies

• Concurrent programming
– Patterns: reductions, functional pipelining
– Pitfalls
– Tooling support

• Android support
– Use cases
– Tooling

• Extension to GP-GPU
• Conclusion

WORKSTATION-BASED ANALYSIS

Workstation host

Instrumented
application

Analysis
backend

trace

Collected
Dependency

Patterns

Interactive
Analysis

GUI

24-9-2012

14

Android device
or emulator

ANDROID DEVICE ANALYSIS

Workstation host

Instrumented
application

Analysis
backend

trace

Collected
Dependency

patterns

Interactive
Analysis

GUI

Android device

Android Linux kernel

App-specific
instrumented

C libs

ANDROID USE CASE: APP WITH NATIVE C

trace

Android
standard

C libs

JNI

Java App UI

Analysis
backend

Analyse C/C++ code in Android app,
under Java hood

24-9-2012

15

EXAMPLE: ANDROID NATIVE ACTIVITY

PRESENTATION CONTENT

• Multi-threading concepts:
– data- vs. task-partitioning
– dependencies

• Concurrent programming
– Patterns: reductions, functional pipelining
– Pitfalls
– Tooling support

• Android support
– Use cases
– Tooling

• Extension to GP-GPU
• Conclusion

24-9-2012

16

FUTURE: CPU + GPU

Parallelization of C code not just across multi-
core host CPU, also include GP-GPU mapping:

• Offload functionality (loop bodies) to GPU

• Verify CPU-to-GPU data dependencies

• Verify intra-GPU data dependencies

• Include performance model

Get more performance out of available silicon!

CONCLUSION

• There is a growing need for exploiting
concurrency in applications

• Parallel programming remains hard:
– Introduction of hard-to-locate bugs regarding

dynamic data races and semaphore issues

– Obtained speedup is lower then expected

• A sequential reference implementation helps
to set a baseline.

• Proper tooling will save on edit-verify
development cycles.

24-9-2012

17

QUESTIONS

• There is a growing need for exploiting
concurrency in applications

• Parallel programming remains hard:
– Introduction of hard-to-locate bugs regarding

dynamic data races and semaphore issues

– Obtained speedup is lower then expected

• A sequential reference implementation helps
to set a baseline.

• Proper tooling will save on edit-verify
development cycles.

?

Thank you for your attention

Jos van Eijndhoven

Oct 31, 2012

