
Application parallelization for 
multi-core Android devices  

 
 

Jos van Eijndhoven 
jos@vectorfabrics.com 

 
Bits&Chips 2012 Embedded Systems 

Nov. 8, 2012,  ’s-Hertogenbosch 
 
 



Bits&Chips 2012 Embedded Systems 2  |  Nov. 8, 2012 

Multi-core ARM and Android conquer the world 

Google Nexus 10 

2-core Samsung A15 
HTC J Butterfly 

4-core Qualcomm 

Sony Experia P 

2-core ST-Ericsson 

Asus Transformer Prime 

“4”-core Nvidia Tegra3 

Huawei Honor2 

4-core Huawei 

Samsung Galaxy SIII 

4-core Samsung 



Bits&Chips 2012 Embedded Systems 3  |  Nov. 8, 2012 

Multi-core usage in Mobile 

2 core processors: 
Assume the OS has multiple processes and/or kernel threads 
to occupy the two cores. Easy! 

4 core processors (and beyond): 
Requires multi-threaded applications Hard! 

To obtain sufficient concurrent workload 

To obtain top user experience 

 

Who makes such applications?? 



Bits&Chips 2012 Embedded Systems 4  |  Nov. 8, 2012 

Creating parallel programs is hard… 

Herb Sutter, chair of the ISO C++ standards committee, 
Microsoft: 

“Everybody who learns concurrency thinks they understand it, 
ends up finding mysterious races they thought weren’t 
possible, and discovers that they didn’t actually understand it 
yet after all” 

 

Steve Jobs, Apple: 

“The way the processor industry is going, 

is to add more and more cores, but nobody 

knows how to program those things. I mean, 

two yeah; four not really; eight, forget it.” 



Bits&Chips 2012 Embedded Systems 5  |  Nov. 8, 2012 

Presentation index 

Introduction 

Multi-threaded concurrency: 

Data- versus Task-partitioning 

Parallelization with dependencies: 

Reduction expressions or Streaming 

Multi-threading: difficult… 

Android: help from Pareon and Perf 

Conclusion 



Bits&Chips 2012 Embedded Systems 6  |  Nov. 8, 2012 

Creating multi-threaded concurrency 

Fork 

Join 

Main program thread 

Concurrent computation threads 

Main thread continues 

Basic fork-join pattern, created through different 
higher-level programming constructs 

Creation of threads is application responsibility. 
Operating System handles run-time scheduling 
across available processors! 



Bits&Chips 2012 Embedded Systems 7  |  Nov. 8, 2012 

Parallelization – two partitioning options 

for (i=0; i<4; i++) { 

    A(i); 

    B(i); 

    C(i); 

} 

Source code: Sequential execution order: 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 

Fo
rk

 

Jo
in

 

Task partitioning: 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 

Data partitioning: 

Fork 

Join 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 



Bits&Chips 2012 Embedded Systems 8  |  Nov. 8, 2012 

Issue: Data dependencies 

Adjust program source for parallelization: 

When feasible, remove inter-thread data dependencies 

Implement required data synchronization 

Fork 

Join 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 

Fork 

Join 

A(0)  

B(0) A(1) 

C(0) B(1) A(2) 

     C(1) B(2) A(3) 

          C(2) B(3) 

               C(3) 

                

Maybe, B(i) 
produces a value 
that is used by 
A(i+1)... 



Bits&Chips 2012 Embedded Systems 9  |  Nov. 8, 2012 

Example Data dependencies 

Variable assigned in loop body, used in later iteration 

// search linked-list for matching items 

// save matches in ‘found’ array of pointers 

for (p = head, n_found = 0; p; p = p->next) 

  if (match_criterion(p)) 

    found[n_found++] = p; 

 

Cannot (easily/trivially) spawn data-parrallel tasks! 

No direct parallel access to list members  *p 

No direct way to assign index to matched item n_found 

Maybe more problems hidden in match_criterion() 



Bits&Chips 2012 Embedded Systems 10  |  Nov. 8, 2012 

Presentation index 

Introduction 

Multi-threaded concurrency: 

Data- versus Task-partitioning 

Parallelization with dependencies: 

Reduction expressions or Streaming 

Multi-threading: difficult… 

Android: help from Pareon and Perf 

Conclusion 



Bits&Chips 2012 Embedded Systems 11  |  Nov. 8, 2012 

Can do: reduction data dependencies 

Reduction expressions: accumulate results of loop bodies with 
commutative operations 

Freedom of re-ordering allows to break sequential constraints 

// conditionally accumulate results 

int acc = 0; 

for (i=0; i<N; i++) 

{ 

  int result = some_work(i); 

  if (some condition(i)) 

     acc += result; 

} 

...use of acc ... 

Commutative operations are basic math like +, *, &&, &, ||,  
but also more complex operations like ‘add item to set’. 

Three(?) different methods to handle these ... 



Bits&Chips 2012 Embedded Systems 12  |  Nov. 8, 2012 

Three methods for reduction dependencies 

Create thread-local copies of the accumulator. Accumulate over 
local copy in each thread. Merge the partial accumulators after 
thread-join. Eg. created automatically by: 
#pragma omp parallel for reduction(...) 

Maintain single accumulator, synchronize updates through 
atomic operations. Eg. in C11 or C++11: 
atomic_add_fetch( &acc, result); 
std::atomic<int> acc; 
acc += result; 

Maintain single accumulator, synchronize updates through 
protection by acquiring and releasing semaphores. 
Eg. Used by Intel “Threaded Building Blocks” (C++): 
concurrent_unordered_set<...> s; 
s.insert(...); 

 

 

 



Bits&Chips 2012 Embedded Systems 13  |  Nov. 8, 2012 

PAREON: Schedule data dependencies 

Note: this is  a preview on 
a potential parallelization 



Bits&Chips 2012 Embedded Systems 14  |  Nov. 8, 2012 

Pipelining: Data deps and task partitioning 

Queue implementation solves dependencies: 

Solve Data dependencies: Consumer thread waits for available data 
(stalls until queue is non-empty) 

Solve Anti dependencies: Producer thread creates next item in next 
memory location (prevents overwriting previous value) 

 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 

Fo
rk

 

Jo
in

 

Task partitioning with inter-thread dependencies: 

Application 

Thread A() Thread B() Thread C() Queue Queue 

Producer-Consumer pattern: 



Bits&Chips 2012 Embedded Systems 15  |  Nov. 8, 2012 

Presentation index 

Introduction 

Multi-threaded concurrency: 

Data- versus Task-partitioning 

Parallelization with dependencies: 

Reduction expressions or Streaming 

Multi-threading: difficult… 

Android: help from Pareon and Perf 

Conclusion 



Bits&Chips 2012 Embedded Systems 16  |  Nov. 8, 2012 

Concurrent C/C++ programming: Pitfalls 

Risc introduction of functional errors: 

Overlooking use of shared/global variables 

(deep down inside called functions, or inside 3rd party library) 

Overlooking exceptions that are raised and catched outside 
studied scope 

Incorrect use of semaphores: flawed protection, deadlocks 

Unexpected performance issues: 

Underestimation of time spent in added multi-threading or 
synchronization code and libraries 

Underestimation of other penalties in OS and HW 
(inter-core cache penalties, context switches, clock-frequency 
reductions) 

Parallel programming remains hard! 



Bits&Chips 2012 Embedded Systems 17  |  Nov. 8, 2012 

Concurrent programming remains hard 

C++11 standardizes valuable primitives  

Provides good insight in C++ concurrency 

Warns for many subtle problems 



Bits&Chips 2012 Embedded Systems 18  |  Nov. 8, 2012 

Development of parallel code 

Guidelines: 

Base upon a sequential program: 
functional and performance reference 

Apply higher-level parallelization patterns and primitives: 
clear semantics, re-use code, reduce risk 

Use tooling for analysis and verification 

Prevent introduction of hard-to-find bugs 

Prevent recoding effort that does not perform 

Managable development process! 



Bits&Chips 2012 Embedded Systems 19  |  Nov. 8, 2012 

PAREON tool workflow 

Developer builds C/C++ application with Pareon’s compiler 
Compiler creates instrumented code 

Execute application with input data set 
Pareon captures trace with call stack and ld/st memory traffic 

Pareon analyzes data dependency patterns 

Developer browses application model 
Selects loops for parallelization from performance estimate 

Performs source-code transformation 

1 

2 

3 



Bits&Chips 2012 Embedded Systems 20  |  Nov. 8, 2012 

Presentation index 

Introduction 

Multi-threaded concurrency: 

Data- versus Task-partitioning 

Parallelization with dependencies: 

Reduction expressions or Streaming 

Multi-threading: difficult… 

Android: help from Pareon and Perf 

Conclusion 



Bits&Chips 2012 Embedded Systems 21  |  Nov. 8, 2012 

Android Libraries 

Android Application 1: Plain, just Java 

Linux Kernel 

Dalvik 
 

Java 
Virtual 

Machine 

System Libraries 

Your Java Application code 

JNI 

Many apps have no critical CPU load 

For now, no Java support in Pareon 



Bits&Chips 2012 Embedded Systems 22  |  Nov. 8, 2012 

Android Libraries 

Android Application 2: with native libraries 

Linux Kernel 

Dalvik 
 

Java 
Virtual 

Machine 

System Libraries 

Your Java Application code 

Your custom 
native library 
from C/C++ 
source code 

JNI 

JNI 

Apps can include “native” binary code for best performance 

Trace to 

Pareon 



Bits&Chips 2012 Embedded Systems 23  |  Nov. 8, 2012 

Android 
Libraries 

Android Application 3: NativeActivity 

Linux Kernel 

Dalvik 
 

Java 
Virtual 

Machine 

System Libraries 

Native Activity 

Your custom 
C/C++ 

‘Application’ 

JNI 

JNI 

“Native activities” are created without Java source code 

Trace to 

Pareon 



Bits&Chips 2012 Embedded Systems 24  |  Nov. 8, 2012 

Real Target Hardware (ARM) Host PC 

Application Analysis on Android target 

Application 
 
 
 
 

instrumented 

Pareon eth eth 
Trace 

data 



Bits&Chips 2012 Embedded Systems 25  |  Nov. 8, 2012 

Host PC 

Android Simulator 

System Setup using Android Simulator 

Application 
 
 
 
 

instrumented 

Pareon 



Bits&Chips 2012 Embedded Systems 26  |  Nov. 8, 2012 

NDK plasma demo app analyzed on Android 



Bits&Chips 2012 Embedded Systems 27  |  Nov. 8, 2012 

Finding data parallelism on Android 



Bits&Chips 2012 Embedded Systems 28  |  Nov. 8, 2012 

Finding data parallelism on Android 



Bits&Chips 2012 Embedded Systems 29  |  Nov. 8, 2012 

Finding data parallelism on Android 



Bits&Chips 2012 Embedded Systems 30  |  Nov. 8, 2012 

Not parallelized: JNI call to render frame 



Bits&Chips 2012 Embedded Systems 31  |  Nov. 8, 2012 

Performance Verification 

For example: PERF ‘flame graph’ 
• sampling-based profiling 
• multi-thread supprt 
• with view into kernel-level 



Bits&Chips 2012 Embedded Systems 32  |  Nov. 8, 2012 

Conclusion 

Today’s gap:  

Multi-core CPUs are everywhere, 

Yet multi-threaded programming remains hard: 

Risk of creating hard-to-locate bugs regarding dynamic data 
races and semaphore issues 

Obtained speedup is lower then expected 

 

A sequential functional reference implementation ... 
   ... helps to set a baseline for parallelization 

 

Android sets a new record in development complexity 

Proper tooling is needed to save on edit-verify development 
cycles 



Bits&Chips 2012 Embedded Systems 33  |  Nov. 8, 2012 

Questions? 

Today’s gap:  

Multi-core CPUs are everywhere, 

Yet multi-threaded programming remains hard: 

Risk of creating hard-to-locate bugs regarding dynamic data 
races and semaphore issues 

Obtained speedup is lower then expected 

 

A sequential functional reference implementation ... 
   ... helps to set a baseline for parallelization 

 

Android sets a new record in development complexity 

Proper tooling is needed to save on edit-verify development 
cycles 



Bits&Chips 2012 Embedded Systems 34  |  Nov. 8, 2012 

Thank you! 

Check www.vectorfabrics.com for a free demo on concurrency analysis 

http://www.vectorfabrics.com/

