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Multi-core ARM and Android conquer the world 

Google Nexus 10 

2-core Samsung A15 
HTC J Butterfly 

4-core Qualcomm 

Sony Experia P 

2-core ST-Ericsson 

Asus Transformer Prime 

“4”-core Nvidia Tegra3 

Huawei Honor2 

4-core Huawei 

Samsung Galaxy SIII 

4-core Samsung 
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Multi-core usage in Mobile 

2 core processors: 
Assume the OS has multiple processes and/or kernel threads 
to occupy the two cores. Easy! 

4 core processors (and beyond): 
Requires multi-threaded applications Hard! 

To obtain sufficient concurrent workload 

To obtain top user experience 

 

Who makes such applications?? 
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Creating parallel programs is hard… 

Herb Sutter, chair of the ISO C++ standards committee, 
Microsoft: 

“Everybody who learns concurrency thinks they understand it, 
ends up finding mysterious races they thought weren’t 
possible, and discovers that they didn’t actually understand it 
yet after all” 

 

Steve Jobs, Apple: 

“The way the processor industry is going, 

is to add more and more cores, but nobody 

knows how to program those things. I mean, 

two yeah; four not really; eight, forget it.” 
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Creating multi-threaded concurrency 

Fork 

Join 

Main program thread 

Concurrent computation threads 

Main thread continues 

Basic fork-join pattern, created through different 
higher-level programming constructs 

Creation of threads is application responsibility. 
Operating System handles run-time scheduling 
across available processors! 
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Parallelization – two partitioning options 

for (i=0; i<4; i++) { 

    A(i); 

    B(i); 

    C(i); 

} 

Source code: Sequential execution order: 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 

Fo
rk

 

Jo
in

 

Task partitioning: 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 

Data partitioning: 

Fork 

Join 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 
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Issue: Data dependencies 

Adjust program source for parallelization: 

When feasible, remove inter-thread data dependencies 

Implement required data synchronization 

Fork 

Join 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 

Fork 

Join 

A(0)  

B(0) A(1) 

C(0) B(1) A(2) 

     C(1) B(2) A(3) 

          C(2) B(3) 

               C(3) 

                

Maybe, B(i) 
produces a value 
that is used by 
A(i+1)... 
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Example Data dependencies 

Variable assigned in loop body, used in later iteration 

// search linked-list for matching items 

// save matches in ‘found’ array of pointers 

for (p = head, n_found = 0; p; p = p->next) 

  if (match_criterion(p)) 

    found[n_found++] = p; 

 

Cannot (easily/trivially) spawn data-parrallel tasks! 

No direct parallel access to list members  *p 

No direct way to assign index to matched item n_found 

Maybe more problems hidden in match_criterion() 
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Can do: reduction data dependencies 

Reduction expressions: accumulate results of loop bodies with 
commutative operations 

Freedom of re-ordering allows to break sequential constraints 

// conditionally accumulate results 

int acc = 0; 

for (i=0; i<N; i++) 

{ 

  int result = some_work(i); 

  if (some condition(i)) 

     acc += result; 

} 

...use of acc ... 

Commutative operations are basic math like +, *, &&, &, ||,  
but also more complex operations like ‘add item to set’. 

Three(?) different methods to handle these ... 
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Three methods for reduction dependencies 

Create thread-local copies of the accumulator. Accumulate over 
local copy in each thread. Merge the partial accumulators after 
thread-join. Eg. created automatically by: 
#pragma omp parallel for reduction(...) 

Maintain single accumulator, synchronize updates through 
atomic operations. Eg. in C11 or C++11: 
atomic_add_fetch( &acc, result); 
std::atomic<int> acc; 
acc += result; 

Maintain single accumulator, synchronize updates through 
protection by acquiring and releasing semaphores. 
Eg. Used by Intel “Threaded Building Blocks” (C++): 
concurrent_unordered_set<...> s; 
s.insert(...); 
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PAREON: Schedule data dependencies 

Note: this is  a preview on 
a potential parallelization 
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Pipelining: Data deps and task partitioning 

Queue implementation solves dependencies: 

Solve Data dependencies: Consumer thread waits for available data 
(stalls until queue is non-empty) 

Solve Anti dependencies: Producer thread creates next item in next 
memory location (prevents overwriting previous value) 

 

A(0) A(1) A(2) A(3) 

B(0) B(1) B(2) B(3) 

C(0) C(1) C(2) C(3) 

Fo
rk

 

Jo
in

 

Task partitioning with inter-thread dependencies: 

Application 

Thread A() Thread B() Thread C() Queue Queue 

Producer-Consumer pattern: 
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Concurrent C/C++ programming: Pitfalls 

Risc introduction of functional errors: 

Overlooking use of shared/global variables 

(deep down inside called functions, or inside 3rd party library) 

Overlooking exceptions that are raised and catched outside 
studied scope 

Incorrect use of semaphores: flawed protection, deadlocks 

Unexpected performance issues: 

Underestimation of time spent in added multi-threading or 
synchronization code and libraries 

Underestimation of other penalties in OS and HW 
(inter-core cache penalties, context switches, clock-frequency 
reductions) 

Parallel programming remains hard! 
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Concurrent programming remains hard 

C++11 standardizes valuable primitives  

Provides good insight in C++ concurrency 

Warns for many subtle problems 
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Development of parallel code 

Guidelines: 

Base upon a sequential program: 
functional and performance reference 

Apply higher-level parallelization patterns and primitives: 
clear semantics, re-use code, reduce risk 

Use tooling for analysis and verification 

Prevent introduction of hard-to-find bugs 

Prevent recoding effort that does not perform 

Managable development process! 
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PAREON tool workflow 

Developer builds C/C++ application with Pareon’s compiler 
Compiler creates instrumented code 

Execute application with input data set 
Pareon captures trace with call stack and ld/st memory traffic 

Pareon analyzes data dependency patterns 

Developer browses application model 
Selects loops for parallelization from performance estimate 

Performs source-code transformation 

1 

2 

3 
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Android Libraries 

Android Application 1: Plain, just Java 

Linux Kernel 

Dalvik 
 

Java 
Virtual 

Machine 

System Libraries 

Your Java Application code 

JNI 

Many apps have no critical CPU load 

For now, no Java support in Pareon 
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Android Libraries 

Android Application 2: with native libraries 

Linux Kernel 

Dalvik 
 

Java 
Virtual 

Machine 

System Libraries 

Your Java Application code 

Your custom 
native library 
from C/C++ 
source code 

JNI 

JNI 

Apps can include “native” binary code for best performance 

Trace to 

Pareon 
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Android 
Libraries 

Android Application 3: NativeActivity 

Linux Kernel 

Dalvik 
 

Java 
Virtual 

Machine 

System Libraries 

Native Activity 

Your custom 
C/C++ 

‘Application’ 

JNI 

JNI 

“Native activities” are created without Java source code 

Trace to 

Pareon 
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Real Target Hardware (ARM) Host PC 

Application Analysis on Android target 

Application 
 
 
 
 

instrumented 

Pareon eth eth 
Trace 

data 
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Host PC 

Android Simulator 

System Setup using Android Simulator 

Application 
 
 
 
 

instrumented 

Pareon 
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NDK plasma demo app analyzed on Android 
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Finding data parallelism on Android 
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Finding data parallelism on Android 
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Finding data parallelism on Android 
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Not parallelized: JNI call to render frame 
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Performance Verification 

For example: PERF ‘flame graph’ 
• sampling-based profiling 
• multi-thread supprt 
• with view into kernel-level 



Bits&Chips 2012 Embedded Systems 32  |  Nov. 8, 2012 

Conclusion 

Today’s gap:  

Multi-core CPUs are everywhere, 

Yet multi-threaded programming remains hard: 

Risk of creating hard-to-locate bugs regarding dynamic data 
races and semaphore issues 

Obtained speedup is lower then expected 

 

A sequential functional reference implementation ... 
   ... helps to set a baseline for parallelization 

 

Android sets a new record in development complexity 

Proper tooling is needed to save on edit-verify development 
cycles 
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Questions? 

Today’s gap:  

Multi-core CPUs are everywhere, 

Yet multi-threaded programming remains hard: 

Risk of creating hard-to-locate bugs regarding dynamic data 
races and semaphore issues 

Obtained speedup is lower then expected 

 

A sequential functional reference implementation ... 
   ... helps to set a baseline for parallelization 

 

Android sets a new record in development complexity 

Proper tooling is needed to save on edit-verify development 
cycles 
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Thank you! 

Check www.vectorfabrics.com for a free demo on concurrency analysis 

http://www.vectorfabrics.com/

